Skip to main content

Advertisement

Log in

Evaluation of thermal, morphological and mechanical properties of PMMA/NaCl/DMF electrospun nanofibers: an investigation through surface methodology approach

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Electrospinning is an efficient, flexible and versatile method of producing nanofibers. The aims of this study are to fabrication and characterize electrospun nanofibers and evaluation of the electrospinning parameters that influence on the nanofibers properties. In this work, polymethylmetacrylate (PMMA) and sodium chloride were dissolved in dimethylformamide for fabrication of PMMA nanofibers through electrospinning. Differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and mechanical testing were used to measure the structure, morphology, diameter, orientation and strength of the nanofibers, respectively. The effect of electrospinning parameters on diameter, morphology and mechanical properties of nanofibers was also investigated. Collector rotating speed and gap distance were also found to be the most important factors that affected diameter and orientation of the nanofibers. Response surface methodology L46 and Box–Behnken experimental design were used to analyze and optimize the results. The theoretical and experimental study revealed that increasing the gap between collector and needle resulted in reduction of the electrospun nanofibers. However, fiber diameter was significantly influenced by decreasing the solution concentration and pump rate. Moreover, fibers with ~720 nm diameter and ~90 % of orientation possessed an ultimate tensile strength of 1.4 MPa, which was exhibited at the following optimized parameters: distance, 10 cm; voltage, 10 kV; flow rate, 5 mL/h; collector rotating speed, 1800 rpm; and solution concentration, 10 wt%. Finally, these nanofibers with superior morphological properties may find application in biomedical, pharmaceutical, drug delivery and tissue scaffold for cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Peponi L, Torre L, Valentini L, Kenny JM (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R Rep 85:1–46

    Article  Google Scholar 

  2. Song K, Zhang Y, Meng J, Green EC, Tajaddod N, Li H, Minus ML (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing-structure-performance relationship. Materials 6:2543–2577

    Article  CAS  Google Scholar 

  3. Peng N, Widojo N, Sukitpaneenit P, Teoh MM, Lipscomb GG, Chung TS, Lai JY (2012) Evolution of polymeric hollow fibers as sustainable technologies: past, present, and future. Prog Polym Sci 37:1401–1424

    Article  CAS  Google Scholar 

  4. Whitesides GM, Grzybowski B (2002) Self-assembly at all scale. Science 295:2418–2421

    Article  CAS  Google Scholar 

  5. Xu HP, Lang WZ, Yan X, Zhang X, Guo YJ (2014) Preparation and characterizations of polyvinylidene fluoride/oxidized multi-wall carbon nanotube membranes with bi-continuous structure by thermally induced phase separation method. J Membr Sci 467:142–152

    Article  CAS  Google Scholar 

  6. Hoseini SJ, Barzegar Z, Bahrami M, Roushani M, Rashidi M (2014) Organometallic precursor route for the fabrication of PtSn bimetallic nanotubes and Pt3Sn/reduced-graphene oxide nanohybrid thin films at oil–water interface and study of their electrocatalytic activity in methanol. J Organomet Chem 769:1–6

    Article  CAS  Google Scholar 

  7. Ahlean N, Johnsson M, Larsson AK, Sundman B (2000) On the carbothermal vapour liquid solid (VLS) mechanism for TaC, TiC, and TaxTi1−yC whisker growth. J Eur Ceram Soc 20:2607–2618

    Article  Google Scholar 

  8. Li YW, Zhao F, Song YJ, Li J, Hu Z, Huang YD (2013) Interfacial microstructure and properties of poly (phenylene benzobisoxazole) fiber grafted with graphene oxide via solvothermal method. Appl Surf Sci 266:306–312

    Article  CAS  Google Scholar 

  9. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem 41:1221–1223

    Article  CAS  Google Scholar 

  10. Ondarçuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett 42:215–220

    Article  Google Scholar 

  11. Qian YF, Su Y, Li XQ, Wang HS, He CL (2010) Electrospinning of polymethyl methacrylate nanofibres in different solvents. Iran Polym J 19:123–129

    CAS  Google Scholar 

  12. Saeed K, Park SY, Ali N (2009) Characterization of poly(butylene terephthalate) electrspun nanofibres containing titanium oxide. Iran Polym J 18:671–677

    CAS  Google Scholar 

  13. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process: a review. J Mater Process Technol 167:283–293

    Article  CAS  Google Scholar 

  14. Tsai PP, Gibson HS, Gibson P (2002) Different electrostatic methods for making electret filters. J Electrostat 54:333–341

    Article  CAS  Google Scholar 

  15. Lai C, Zhong G, Yue Z, Chen G, Zhang L, Vakili A, Wang Y, Zhu L, Liu J, Fong H (2011) Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer 52:519–528

    Article  CAS  Google Scholar 

  16. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991

    Article  CAS  Google Scholar 

  17. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  CAS  Google Scholar 

  18. Song K, Zhang Y, Meng J, Minus ML (2012) Lubrication of poly(vinyl alcohol) chain orientation by carbon nano-chips in composite tapes. J Appl Polym Sci 127:2977–2982

    Article  Google Scholar 

  19. Xu JZ, Zhong GJ, Hsiao BS, Fu Q, Li ZM (2014) Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog Polym Sci 39:555–593

    Article  CAS  Google Scholar 

  20. Liu L, Dzenis YA (2008) Analysis of the effects of the residual charge and gap size on electrospun nanofiber alignment in a gap method. Nanotechnology 19:355307

    Article  Google Scholar 

  21. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers. Angew Chem Int Edit 40:2581–2590

    Article  CAS  Google Scholar 

  22. Wang M, Singh H, Hatton TA, Rutledge GC (2004) Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45:5505–5514

    Article  CAS  Google Scholar 

  23. Lippert T, Dickinson JT (2003) Chemical and spectroscopic aspects of polymer ablation: special features and novel directions. Chem Rev 103:453–486

    Article  CAS  Google Scholar 

  24. Ishiyama C, Yamamoto Y, Higo Y (2005) Effects of humidity history on the tensile deformation behaviour of polymethyl methacrylate (PMMA) films. MRS Proc 875:345–350

    CAS  Google Scholar 

  25. Lee CR, Grad S, Gorna K, Gogolewski S, Goessl A, Alini M (2005) Fibrin–polyurethane composites for articular cartilage tissue engineering: a preliminary analysis. Tissue Eng 11:1562–1573

    Article  CAS  Google Scholar 

  26. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  CAS  Google Scholar 

  27. Chen JC, Harrison IR (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40:25–45

    Article  CAS  Google Scholar 

  28. Zhou X, Zheng F, Li H, Lu C (2010) An environment-friendly thermal insulation material from cotton stalk fibers. Energy Build 42:1070–1074

    Article  Google Scholar 

  29. Sui X, Wiesel E, Wagner HD (2012) Mechanical properties of electrospun PMMA micro-yarns: effects of NaCl mediation and yarn twist. Polymer 53:5037–5044

    Article  CAS  Google Scholar 

  30. Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235

    Article  CAS  Google Scholar 

  31. Ji L, Medford AJ, Zhang X (2009) Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer 50:605–612

    Article  CAS  Google Scholar 

  32. Matabola KP, De Vries AR, Luyt AS, Kumar R (2011) Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. Express Polym Lett 5:635–642

    Article  CAS  Google Scholar 

  33. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of polymethyl methacrylate: exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810

    Article  CAS  Google Scholar 

  34. Kaniappan K, Latha S (2011) Certain investigation on the formulation and characterization of PS/PMMA blends. Int J Chemtechnol Res 3:708–717

    CAS  Google Scholar 

  35. Islam MS, Yeum JH (2013) Electrospun pullulan/polyvinyl alcohol/silver hybrid nanofibers: preparation and property characterization for antibacterial activity. Colloid Surface A 436:279–286

    Article  CAS  Google Scholar 

  36. Yördem OS, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 29:34–44

    Article  Google Scholar 

  37. Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Pol Phys 40:2119–2129

    Article  CAS  Google Scholar 

  38. Khamforoush M, Hatami T, Mahjob M, Dabirian F, Zandi A (2014) Performance evaluation of modified rotating-jet electrospinning method by investigating the effect of collector size on the nanofibers alignment. Iran Polym J 23:569–580

    Article  CAS  Google Scholar 

  39. Cha DI, Kim KW, Chu GH, Kim HY, Lee KH, Bhattarai N (2006) Mechanical behaviors and characterization of electrospun polysulfone/polyurethane blend nonwovens. Macromol Res 14:331–337

    Article  CAS  Google Scholar 

  40. Thomas V, Zhang X, Catledge SA, Vohra YK (2007) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater 2:224–232

    Article  CAS  Google Scholar 

  41. Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Elctrospinning of polymer nanofibers: effect on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Ministry of Education of Malaysia under # DIP-2014-006 and LRGS-USM-UKM/PT/05 Grants Numbers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Niaz Akhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, M.N., Sulong, A.B., Karim, S.A. et al. Evaluation of thermal, morphological and mechanical properties of PMMA/NaCl/DMF electrospun nanofibers: an investigation through surface methodology approach. Iran Polym J 24, 1025–1038 (2015). https://doi.org/10.1007/s13726-015-0390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0390-8

Keywords

Navigation