Skip to main content
Log in

Effect of zinc borate on mechanical and dielectric properties of metallocene linear low-density polyethylene/rubbers/magnesium oxide composite for wire and cable applications

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The effect of zinc borate (ZB) quantity on the mechanical and dielectric properties of 20 phr magnesium oxide/10 % rubbers (9/1 NR/ENR-50)/metallocene linear low-density polyethylene (mLLDPE) in the presence of N,N-m-phenylene bismaleimide (HVA-2) compatibilizer was investigated for wire and cable applications. With the increase in ZB loading, the tensile strength and the elongation-at-break of the composites decreased while the tensile modulus increased. In all composites, the strain-induced crystallization phenomenon at 200 % elongation was being observed in the stress–strain curves. Moreover, the dielectric strength, dielectric loss, permittivity and volume resistivity at frequency of 50 Hz were investigated. The permittivity of all composites increased with a rise in the voltage within the range of 1–5 kV. The loading of ZB in the composites improved the permittivity and volume resistivity as compared to the neat mLLDPE. The dielectric loss increased and 2 phr ZB composite displayed the highest dielectric loss among all other composites. On the other hand, the breakdown decreased with increasing ZB loading and the highest breakdown was observed in the 6 phr ZB composite. It was concluded that all composites are suitable for wire and cable application and the best result based on dielectric properties was observed in the 6 phr ZB composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Han SJ, Gross LH (2007) Crosslinking and electrical characterization of metallocene linear low density polyethylene. In: Electrical insulation conference on electrical manufacturing expo, pp 80–84

  2. Müller M, Kulikov O, Hornung K, Wagner MH (2010) The use of thermoplastic elastomers as polymer processing aids in processing of linear low density polyethylene. Polym Sci Ser A 52:1163–1170

    Article  Google Scholar 

  3. Wang S, Fujita M, Tanimoto G, Ajda F, Fujiwara Y (1996) Development of insulation material for DC cables-space charge properties of metallocene catalyzed polyethylene. Conf IEEE Int Sympos Electr Insul 2:657–660

  4. Taniguchi Y, Kaneko K, Mizutani T, Ishioka M (2001) Space charge behaviors of various low density polyethylene (ISEIM 2001). In: Proceedings of 2001 international symposium on electrical insulation materials, pp 440–443

  5. Araoka M, Yoneda H, Ohki Y (1999) Dielectric breakdown of new type polymerized polyethylene using a single-site catalyst. Dielectr Electr Insul IEEE Trans 6:326–330

    Article  CAS  Google Scholar 

  6. Notingher PJ, Toureille A, Santana J, Martinotto L, Albertini M (2001) Study of space charge accumulation in polyolefins submitted to AC stress. Dielectr Electr Insul IEEE Trans 8:972–984

    Article  CAS  Google Scholar 

  7. Samsuri A (2010) Degradation of natural rubber and synthetic elastomers. Shreir’s Corros 3:2407–2438

    Article  Google Scholar 

  8. Mathew NM (1992) Dev Crop Sci 23:399–425

    Article  Google Scholar 

  9. Piah MAM, Darus A, Hassan A (2005) Electrical tracking performance of LLDPE-natural rubber blends by employing combination of leakage current level and rate of carbon track propagation. Dielectr Electr Insul IEEE Trans 12:1259–1265

    Article  CAS  Google Scholar 

  10. Davies CKL, Wolfe SV, Gelling IR, Thomas AG (1983) Strain crystallization in random copolymers produced by epoxidation of cis-1,4-polyisoprene. Polymer 24:107–113

    Article  CAS  Google Scholar 

  11. Guo B, Cao Y, Jia D, Qiu Q (2004) Thermoplastic elastomers derived from scrap rubber powder/LLDPE blend with LLDPE-graft-(epoxidized natural rubber) dual compatibilizer. Macromol Mater Eng 289:360–367

  12. Noriman NZ, Ismail H, Rashi AA (2010) Characterization of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber (SBR/NBRr) blends: the effects of epoxidized natural rubber (ENR-50) as a compatibilizer. Polym Test 29:200–208

    Article  CAS  Google Scholar 

  13. Poh BT, Ismail H, Tan KS (2002) Material properties effect of filler loading on tensile and tear properties of SMR L/ENR 25 and SMR L/SBR blends cured via a semi-efficient vulcanization system. Polym Test 21:801–806

    Article  CAS  Google Scholar 

  14. Awang M, Ismail H (2008) Preparation and characterization of polypropylene/waste tyre dust blends with addition of DCP and HVA-2 (PP/WTDP-HVA2). Polym Test 27:321–329

    Article  CAS  Google Scholar 

  15. Jayasree TK, Predeep P, Thomas S, Laladas KP (2003) Tearing and glass transition behavior of thermoplastic elastomeric blends of high density polyethylene/styrene butadiene rubber: influence of blend ratio, morphology and dynamic crosslinking. J Polym Mater 20:227–236

    CAS  Google Scholar 

  16. Hassan A, Wahit MU, Chee CY (2003) Mechanical and morphological properties of PP/NR/LLDPE ternary blend—effect of HVA-2. Polym Test 22:281–290

    Article  CAS  Google Scholar 

  17. Brett NH (1991) Magnesium and alkaline-earth oxides. In: Brook RJ (ed) Concise encyclopedia of advanced ceramic materials, pp 283–286. Pergamon, Oxford

  18. Roessler DM, Huffman DR (1997) Magnesium oxide (MgO). In: Edward DP (ed) Handbook of optical constants of solids, pp 919–955. Academic, Burlington

  19. Ishimoto K, Kanegae E, Ohki Y, Tanaka T, Sekiguchi Y, Murata Y, Reddy C (2009) Superiority of dielectric properties of LDPE/MgO nanocomposites over microcomposites. Dielectr Electr Insul IEEE Trans 16:1735–1742

    Article  CAS  Google Scholar 

  20. Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y (2008) DC conduction and electrical breakdown of MgO/LDPE nanocomposite. Dielectr Electr Insul IEEE Trans 15:33–39

    Article  CAS  Google Scholar 

  21. Takada T, Hayase Y, Tanaka Y (2008) Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. Dielectr Electr Insul IEEE Trans 15:152–160

    Article  CAS  Google Scholar 

  22. Gonen M, Balkose D, Ulku S (2011) Supercritical ethanol drying of zinc borates of 2ZnO·3B2O3·3H2O and ZnO·B2O3·2H2O. J Supercrit Fluids 59:43–52

  23. Kılınç M, Çakal GÖ, Yeşil S, Bayram G, Eroğlu İ, Özkar S (2010) Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium. J Cryst Growth 312:3361–3366

    Article  Google Scholar 

  24. Yıldız B, Seydibeyoglu MO, Guner FS (2009) Polyurethane–zinc borate composites with high oxidative stability and flame retardancy. Polym Degrad Stabil 94:1072–1075

    Article  Google Scholar 

  25. Innes A, Innes J (2011) In: Myer K (ed) Applied plastics engineering handbook. William Andrew Publishing, New York

  26. Alwaan IM, Hassan A, Jawaid M (2013) Effect of natural rubber/epoxidized natural rubber (90/10) on mechanical and thermal properties of linear low density polyethylene. J Polym Mater 30:117–130

    CAS  Google Scholar 

  27. Alwaan IM, Hassan A (2013) The effects of magnesium oxide on the thermal, morphological, and crystallinity properties of metallocene linear low-density polyethylene/rubbers composite. J Polym Eng 33:229–238

    CAS  Google Scholar 

  28. Alwaan IM, Hassan A (2014) Effect of zinc borate loading on thermal stability, flammability, crystallization properties of magnesium oxide/(90/10) metallocene linear low density polyethylene/rubbers blend. Iran Polym J 23:277–287

    Article  CAS  Google Scholar 

  29. ExxonMobil Chemical (2011) Metallocene polyethylene resin Exceed 1018CA. http://www.exxonmobilpe.com. Accessed 10 June 2014

  30. Queensland Magnesia (2014) Magnesium oxide grade EMAG® 1000. http://www.qmag.com.au/pdf/EMAG1000.pdf. Accessed 30 June 2014

  31. Firebrake® ZB (2013) http://www.borax.com/product/firebrake-zb.aspx. Accessed 20 June 2014

  32. Kontou E, Niaounakis M (2006) Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 47:1267–1280

    Article  CAS  Google Scholar 

  33. Ramazani SAA, Rahimi A, Frounchi M, Radman S (2008) Short communication investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites. Mater Design 29:1051–1056

    Article  Google Scholar 

  34. Hashim R, Sulaiman O, Kumar RN, Tamyez PF, Murphy RJ, Ali Z (2009) Physical and mechanical properties of flame retardant urea formaldehyde medium density fiberboard. J Mater Process Technol 209:635–640

    Article  CAS  Google Scholar 

  35. Sain M, ParkSH Suhara F, Law S (2004) Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym Degrad Stabil 83:363–367

    Article  CAS  Google Scholar 

  36. Wang Z, Qu B, Fan W, Hu Y, Shen X (2002) Effects of PE-g-DBM as a compatibilizer on mechanical properties and crystallization behaviors of magnesium hydroxide-based LLDPE blends. Polym Degrad Stabil 76:123–128

    Article  Google Scholar 

  37. Niemelä T, Niiranen H, Kellomäki M, Törmälä P (2005) Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity. Acta Biomater 1:235–242

    Article  Google Scholar 

  38. Liu J, Zhang Y (2011) Effect of ethylene-acrylic acid copolymer on flame retardancy and properties of LLDPE/EAA/MH composites. Polym Degrad Stabil 96:2215–2220

    Article  CAS  Google Scholar 

  39. Ismail H, Nizam JM, Abdul Khalil HPS (2001) Material properties the effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Test 20:125–133

    Article  CAS  Google Scholar 

  40. Kumar MSC, Alagar M, Prabu AA (2003) Studies on dynamic mechanical and mechanical properties of vinyloxyaminosilane grafted ethylene propylene diene terpolymer/linear low density polyethylene (EPDM-g-VOS/LLDPE) blends. Eur Polym J39:805–816

    Article  Google Scholar 

  41. Mae H, Omiya M, Kishimoto K (2008) Effects of strain rate and density on tensile behavior of polypropylene syntactic foam with polymer microballoons. Mater Sci Eng A 477:168–178

    Article  Google Scholar 

  42. Guzmán M, Vega B, Agulló N, Giese U, Borrós S (2012) Zinc oxide versus magnesium oxide revisited. Part 1. Rubber Chem Technol 85:38–55

    Article  Google Scholar 

  43. Chokanandsombat Y, Sirisinha C (2012) MgO and ZnO as reinforcing fillers in cured polychloroprene rubber. J Appl Polym Sci 128:2533–2540

    Article  Google Scholar 

  44. Liu Y, Huglin MB (1995) Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels. Polymer 36:1715–1718

    Article  CAS  Google Scholar 

  45. Franse MWCP, teNijenhuis K (2000) Crosslinking index, molecular weight distribution and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer. Part 5. Primary polymer with a discrete distribution of the molecular weights. J Mol Struct 554:1–10

    Article  CAS  Google Scholar 

  46. Kishore Shankar R, Sankaran S (2005) Gradient syntactic foams: tensile strength, modulus and fractographic features. Mater Sci Eng A 412:153–158

    Article  Google Scholar 

  47. Andritsch T, Kochetov R, Morshuis PHF, Smit JJ (2010) Short term DC breakdown and complex permittivity of Al2O3- and MgO-epoxy nanocomposites. In: Annual report conference on electrical insulation and dielectric phenomena (CEIDP), West Lafayette, pp 1–4

  48. Wurm A, Soliman R, Schick C (2003) Early stages of polymer crystallization—a dielectric study. Polymer 44:7467–7476

    Article  CAS  Google Scholar 

  49. Im DH, Kim ES (2012) Effects of crystallinity on dielectric properties of MgWO4 filled semi-crystalline polymer composites. Ferroelectrics 434:19–26

  50. Su J, Chen S, Zhang J, Xu Z (2010) Reinforcement of ethylene–propylene–diene rubber/samarium borate and ethylene–propylene–diene rubber/Sb-doped SnO2 composites by three types of ethylene–acrylic acid: assessment of acrylic acid content on crystallinity, cure, mechanical, and electric properties. J Rein Plast Compos 29:2946–2960

    Article  CAS  Google Scholar 

  51. Dishovsky N, El-Tantawy F, Dimitrov R (2004) Effect of bi-containing superconducting ceramic on the volume resistivity of butyl rubber composites. Polym Test 23:69–75

    Article  CAS  Google Scholar 

  52. George S, Varughese KT, Thomas S (1999) Dielectric properties of isotactic polypropylene/nitrile rubber blends: effects of blend ratio. Filler addition, and dynamic vulcanization. J Appl Polym Sci 73:255–270

    Article  CAS  Google Scholar 

  53. Workman J Jr (2001) Dielectric constants of materials. The handbook of organic compounds. Academic Press, Burlington, pp 275–292

    Book  Google Scholar 

  54. Khor SF, Talib ZA, Daud WM, Sidek HAA, Ng BH (2009) Effects of MgO on dielectric properties and electrical conductivity of ternary zinc magnesium phosphate glasses. J Non Cryst Solids 355:2533–2539

    Article  CAS  Google Scholar 

  55. Su J, Chen S, Zhang J, Xu Z (2009) Material properties combined effect of pH level and surface treatment of Sm2O3, SmBO3 and ATO particles on cure, mechanical and electric properties of EPDM composites. Polym Test 28:419–427

    Article  CAS  Google Scholar 

  56. Todd MG, Shi FG (2003) Characterizing the interphase dielectric constant of polymer composite materials: effect of chemical coupling agents. J Appl Phys 94:4551–4557

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwaan, I.M., Hassan, A. & Piah, M.A.M. Effect of zinc borate on mechanical and dielectric properties of metallocene linear low-density polyethylene/rubbers/magnesium oxide composite for wire and cable applications. Iran Polym J 24, 279–288 (2015). https://doi.org/10.1007/s13726-015-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0319-2

Keywords

Navigation