Corrosion behavior of aluminum/silica/polystyrene nanostructured hybrid flakes

Abstract

The corrosion protection of aluminum flake pigments has been extended by means of an encapsulating inorganic/organic silica/polystyrene hybrid nanolayer. A silica nanolayer encapsulated the surface of aluminum flakes (Al) by hydrolysis and polycondensation of tetraethylorthosilicate via sol–gel process to yield Al/Si flakes. Then, 3-methacryloxypropyltrimethoxysilane (MPS) was used as surface modifier which has polymerizable groups to participate in polymerization reaction (Al/Si/MPS). A polystyrene (PS) coating layer was applied on Al/Si/MPS flakes by free radical polymerization of styrene initiating with Azobisisobutyronitrile at 60 °C and subsequent washing of free chains with solvent yielded Al/Si/PS flakes. Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy showed that silica and PS nanolayers were formed on the aluminum flakes. The attached PS chains on the surface were detached by hydrofluoric acid aqueous solution and analyzed by gel permeation chromatography (GPC). Also, a transmission electron microscopy image showed clearly that the encapsulating layers are in the scale of nano. Good results were obtained in terms of corrosion protection in acidic and alkaline solutions, indicating that the silica/polymer hybrid nanolayer coating acts as an efficient protective film. After encapsulating the flakes, the evolved hydrogen volume was dropped and hybrid nanolayer resulted in no evolved hydrogen volume.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Pi PH, Chen J, Chen K, Cai ZQ, Zheng DF, Wen XF, Cheng J, Yang ZR (2012) Effects of acid treatment on adhesive performance of encapsulated aluminium pigments on plastic sheets. Can J Chem Eng 90:1224–1230

    CAS  Article  Google Scholar 

  2. 2.

    Müller B, Franze K, Mebarek D (1995) Corrosion inhibition of aluminum pigments in aqueous alkaline media at different pH values. Corrosion 51:625–630

    Article  Google Scholar 

  3. 3.

    Jadhav N, Vetter CA, Gelling VJ (2013) The effect of polymer morphology on the performance of a corrosion inhibiting polypyrrole/aluminum flake composite pigment. Electrochim Acta 102:28–43

    CAS  Article  Google Scholar 

  4. 4.

    Liu H, Ye H, Zhang Y, Tang X (2008) Preparation and characterization of poly(trimethylolpropane triacrylate)/flaky aluminum composite particle by in situ polymerization. Dyes Pigment 79:236–241

    CAS  Article  Google Scholar 

  5. 5.

    Razavi-Tousi SS, Szpunar JA (2014) Mechanism of corrosion of activated aluminum particles by hot water. Electrochim Acta 127:95–105

    CAS  Article  Google Scholar 

  6. 6.

    Karlsson PM, Esbjörnsson NB, Holmberg K (2009) Admicellar polymerization of methyl methacrylate on aluminum pigments. J Colloid Interf Sci 337:364–368

    CAS  Article  Google Scholar 

  7. 7.

    Sabagh S, Bahramian AR, Kokabi M (2012) SiAlON nanoparticles effect on the corrosion and chemical resistance of epoxy coating. Iran Polym J 21:837–844

    CAS  Article  Google Scholar 

  8. 8.

    Ershad-Langroudi A, Rahimi A (2014) Effect of ceria and zirconia nanoparticles on corrosion protection and viscoelastic behavior of hybrid coatings. Iran Polym J 23:267–276

    CAS  Article  Google Scholar 

  9. 9.

    Sabagh S, Bahramian AR, Kokabi M (2012) SiAlON nanoparticles effect on the behaviour of epoxy coating. Iran Polym J 21:229–237

    CAS  Article  Google Scholar 

  10. 10.

    Karlsson P, Palmqvist AEC, Holmberg K (2006) Surface modification for aluminium pigment inhibition. Adv Colloid Interf Sci 128–130:121–134

    Article  Google Scholar 

  11. 11.

    Supplit R, Schubert U (2007) Corrosion protection of aluminum pigments by sol-gel coatings. Corros Sci 49:3325–3332

    CAS  Article  Google Scholar 

  12. 12.

    Popoola PAI, Omotayo S, Loto CA, Popoola OM (2013) Inhibitive action of ferrous gluconate on aluminum alloy in saline environment. Adv Mater Sci Eng 2013:639071

    Google Scholar 

  13. 13.

    Yan M, Vetter CA, Gelling VJ (2010) Electrochemical investigations of polypyrrole aluminum flake coupling. Electrochim Acta 55:5576–5583

    CAS  Article  Google Scholar 

  14. 14.

    Guo L, Song W, Hu M, Xie C, Chen X (2008) Preparation and reactivity of aluminum nanopowders coated by hydroxyl-terminated polybutadiene (HTPB). Appl Surf Sci 254:2413–2417

    CAS  Article  Google Scholar 

  15. 15.

    Liang B, Wang GD, Zhang BY, Zhang XM (2014) Optimization of sol-gel coating on the surface of aluminum alloy powder for corrosion protection in the condition of ultrasonic radiation. Mater Corros. doi:10.1002/maco.201307270

    Google Scholar 

  16. 16.

    Zhang Y, Ye H, Liu H, Han K (2011) Preparation and characterisation of aluminium pigments coated with silica for corrosion protection. Corros Sci 53:1694–1699

    CAS  Article  Google Scholar 

  17. 17.

    Li L, Pi P, Wen X, Cheng J, Yang Z (2008) Optimization of sol-gel coatings on the surface of aluminum pigments for corrosion protection. Corros Sci 50:795–803

    CAS  Article  Google Scholar 

  18. 18.

    Liu H, Ye H, Zhang Y (2008) Preparation and characterization of PMMA/flaky aluminum composite particle in the presence of MPS. Colloid Surf A Physicochem Eng Asp 315:1–6

    CAS  Article  Google Scholar 

  19. 19.

    Yan M, Vetter CA, Gelling VJ (2013) Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys. Corros Sci 70:37–45

    CAS  Article  Google Scholar 

  20. 20.

    Joubert M, Save M, Mornet S, Lavaud F, Pellerin V, Morvan F, Tranchant J-F, Duguet E, Billon L (2014) Surface patterning of micron-sized aluminum flakes by seeded dispersion polymerization: towards waterborne colored pigments by gold nanoparticles adsorption. Polymer 55:762–771

    CAS  Article  Google Scholar 

  21. 21.

    Liu H, Ye H, Zhang Y (2007) Preparation of PMMA grafted aluminum powder by surface-initiated in situ polymerization. Appl Surf Sci 253:7219–7224

    CAS  Article  Google Scholar 

  22. 22.

    Liu H, Ye H, Tang X (2007) Aluminum pigment encapsulated by in situ copolymerization of styrene and maleic acid. Appl Surf Sci 254:616–620

    CAS  Article  Google Scholar 

  23. 23.

    Li LJ, Pi PH, Wen XF (2008) Aluminum pigments encapsulated by inorganic-organic hybrid coatings and their stability in alkaline aqueous media. J Coat Technol Res 5:77–83

    CAS  Article  Google Scholar 

  24. 24.

    Sarsabili M, Parvini M, Salami-Kalajahi M, Asfadeh A (2013) Effect of MCM-41 nanoparticles on the kinetics of free radical and RAFT polymerization of styrene. Iran Polym J 22:155–163

    CAS  Article  Google Scholar 

  25. 25.

    Liu H, Ye H (2008) Synthesis and property of poly(trimethylolpropane triacrylate)/Al nanocomposite particle by in situ solution polymerization. Appl Surf Sci 254:4432–4438

    CAS  Article  Google Scholar 

  26. 26.

    Umoren SA, Obot IB, Ebenso EE, Okafor PC, Ogbobe O, Oguzie EE (2006) Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics. Anti-Corros Methods Mater 53:277–282

    CAS  Article  Google Scholar 

  27. 27.

    Diaconu G, Micusık M, Bonnefond A, Paulis M, Leiza JR (2009) Macroinitiator and macromonomer modified montmorillonite for the synthesis of acrylic/MMT nanocomposite latexes. Macromolecules 42:3316–3325

    CAS  Article  Google Scholar 

  28. 28.

    Supplit R, Schubert US (2007) Corrosion protection of aluminum pigments by sol-gel coatings. Corros Sci 49:3325–3332

    CAS  Article  Google Scholar 

  29. 29.

    Carre A (2007) Polar interactions at liquid/polymer interfaces. Adhes Sci Technol 21:961–981

    CAS  Article  Google Scholar 

  30. 30.

    Żenkiewicz M (2007) Methods for the calculation of surface free energy of solids. J Achieve Mater Manuf Eng 24:137–145

    Google Scholar 

  31. 31.

    Subedi DP (2011) Contact angle measurement for the surface characterization of solids. Himalayan Phys 2:1–4

    Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of the Iran National Science Foundation (INSF) (grant no. 91002479).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Salami-Kalajahi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amirshaqaqi, N., Salami-Kalajahi, M. & Mahdavian, M. Corrosion behavior of aluminum/silica/polystyrene nanostructured hybrid flakes. Iran Polym J 23, 699–706 (2014). https://doi.org/10.1007/s13726-014-0264-5

Download citation

Keywords

  • Aluminum flakes
  • Corrosion protection
  • Polystyrene
  • Silica
  • In situ polymerization
  • Encapsulation