Skip to main content
Log in

Electrochemical copolymerization of carbazole and 2,2′:5′-2″ terthiophene: characterization and micro-capacitor application

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this paper, a copolymer of carbazole (Cz) and 2,2′:5′,2″-terthiophene (TTh) was electropolymerized in 0.1 M sodium perchlorate (NaClO4)/acetonitrile (CH3CN) on glassy carbon electrode. The optimum conditions of resulting homopolymers of Cz, TTh and copolymer of Cz and TTh in the initial feed ratio of [Cz]0/[TTh]0 = 1/10 were characterized by cyclic voltammetry, Fourier-transform infrared-attenuated total reflectance, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy. Morphological analysis of copolymer shows that a micro-spherical and web-like morphology was formed for copolymer at different initial feed ratios of [Cz]0/[TTh]0 = 1/2, 1/5 and 1/10. The capacitive behavior of the modified electrodes was defined via Nyquist, Bode-magnitude, and Bode-phase plots. The highest low-frequency capacitance (C LF) was obtained as 4.11 mFcm−2 in the initial feed ratio of [Cz]0/[TTh]0 = 1/10. Double-layer capacitance (C dl) and phase angles (θ) were obtained for homopolymer and copolymer systems. The highest C dl was obtained as 2.01 mFcm−2 for the copolymer in the initial feed ratio of [Cz]0/[TTh]0 = 1/2. The highest phase angle of copolymer was obtained as θ = ~75° in the initial feed ratio of [Cz]0/[TTh]0 = 1/1. These capacitance results confirmed that films of copolymer Cz/TTh are promising materials for micro-capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Torres W, Fox MA (1992) Graded spatial-distribution in conducting copolymers of pyrrole and thiophene. Chem Mater 4:146–152

    Article  CAS  Google Scholar 

  2. Ustamehmetoglu B, Kelleboz E, Sarac AS (2003) Oxidative copolymerization of pyrrole and N-methylpyrrole. Int J Polym Anal Charact 8:255–268

    Article  CAS  Google Scholar 

  3. Taylor R (1986) In: Gronowitz S (ed) The chemistry of heterocyclic compounds, vol 44, Part 2. Wiley, New York, pp 1–118

  4. Lagurendavidson L, Pham CV, Zimmer H, Mark HB, Ondrus DJ (1988) Steric effects on the controlled potential electro-oxidation of 3-methylthiophene and thiophene oligomers and the properties of their polymer films. J Electrochem Soc 135:1406–1414

    Article  CAS  Google Scholar 

  5. Li S, He ZC, Zhang AS, Yu J, Wu HB, Zhou Y, Chen S, Zhong C, Qin JG, Li Z (2011) New alternating copolymers of fluorene and triphenylamine bearing terthiophene and acceptor groups in the side chains: synthesis and photovoltaic properties. Polymer 52:5302–5311

    Article  CAS  Google Scholar 

  6. Abdiryim T, Jamal R, Zhao C, Tunsagul A, Nurullaa I (2010) Structure and properties of solid-state synthesized poly(3,4-ethylenedioxy-2,2′:5′,2″terthiophene). Synt Met 160:325–332

    Article  CAS  Google Scholar 

  7. Moghaddam RB, Pickup PG (2013) Mechanistic studies of formic acid oxidation at polycarbazole supported Pt nanoparticles. Electrochim Acta 111:823–829

    Article  CAS  Google Scholar 

  8. Wen HB, Ge ZY, Liu Y, Yokozawa T, Lu L, Quyang XH, Tan Z (2013) Efficient synthesis of well-defined polycarbazoles via catalyst-transfer Kumada coupling polymerization. Eur Polym J 49:3740–3743

    Article  CAS  Google Scholar 

  9. Li XJ, Li ML, Gao N, Li F, Zhang M, Baumgarten M (2013) A new blue-emitting conjugated polycarbazoles: low thresold of amplified spontaneous emission and charge-transporting properties. Synth Met 176:51–54

    Article  CAS  Google Scholar 

  10. Chen Q, Luo M, Hammershoj P, Zhou D, Han Y, Laursen BW, Yan CG, Han BH (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134:6084–6087

    Article  CAS  Google Scholar 

  11. Santhanam KSV, Sundaresan NS (1986) pi-conjugated polycarbazole conducting polymeric electrode for stabilization of intermediate redox couples. Indian J Technol 24:417–422

    CAS  Google Scholar 

  12. Penwell RC, Ganguly BN, Smith TW (1978) Poly(N-vinylcarbazole)-selective reviews of its polymerization, structure, properties, and electrical characteristics. Macromol Rev J Polym Sci 13:63–160

    Article  CAS  Google Scholar 

  13. Clergereaux R, Seguy I, Jolinat P, Farenc J, Destruel P (2000) Electronic conduction in electropolymerized carbazole thin films. J Phys D Appl Phys 33:1947–1952

    Article  CAS  Google Scholar 

  14. Taoudi H, Bernede JC, Del Valle MA, Bonnet A, Malinie P, Morsli M, Diaz F, Tregouet Y, Bareau A (2000) Polycarbazole obtained by electrochemical polymerization of monomers either in solution or in thin film form. J Appl Polym Sci 75:1561–1568

    Article  CAS  Google Scholar 

  15. Seol H, Jeong H, Jeon S (2009) Optoelectrochemical properties of copolymer of terthiophene with 3,4-ethylenedioxypyrrole. J Electroanal Chem 636:107–112

    Article  CAS  Google Scholar 

  16. Ku SY, Treat N, Hawker CJ (2010) Facile syntheses of low band π-conjugated copolymers based on fused terthiophene and benzothiadiazole. 240th ACS Nation Meet, Boston, MA, United States, August 22–26, pp 837

  17. Cik G, Krajcovic J, Hubinova M, Kristin J, Cervan I, Sersen F (2004) Properties of copolymer of 2,2′:5′,2″-terthiophene-5,5′-dicarboxylic acid and polyethylene oxide. Synth Met 140:301–307

    Article  CAS  Google Scholar 

  18. Buvat P, Hourquebie P (1999) Metallic properties of polythiophene based conducting polymers. Synth Met 101:17–18

    Article  CAS  Google Scholar 

  19. Pertines R, Ponnapati R, Felipe MJ, Advincula R (2011) Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens Bioelectron 26:2766–2771

    Article  Google Scholar 

  20. Kaewtong C, Jiang GQ, Ponnapati R, Pulpoka B, Advincula R (2010) Redox nano reactor dendrimer boxes: in situ hybrid gold nanoparticles via terthiophene and carbazole peripheral dendrimer oxidation. Soft Matter 6:5316–5319

    Article  CAS  Google Scholar 

  21. Taranekar P, Fulghum T, Baba A, Patton D, Advincula R (2007) Quantitative electrochemical and electrochromic behavior of terthiophene and carbazole containing conjugated polymer network film precursors: EC-QCM and EC-SPR. Langmuir 23:908–917

    Article  CAS  Google Scholar 

  22. Hinkens DM, Chen QL, Siddiki MK, Gosztola D, Tapsak MA, Qiao QQ, Jeffries-EL M, Darling SB (2013) Model compounds based on poly(p-phenylenevinyleneborane) and terthiophene: ınvestigating the p-n junction in diblock copolymers. Polymer 54:3510–3520

    Article  CAS  Google Scholar 

  23. Cebeci FÇ, Sezer E, Sarac AS (2009) A novel EDOT-nonybithiazole-EDOT based comonomer as an active electrode material for supercapacitor applications. Electrochim Acta 54:6354–6360

    Article  CAS  Google Scholar 

  24. Petibon R, Sinha NN, Burns JC, Aiken CP, Ye H, VanElzen CM, Jain G, Trussler S, Dahn JR (2014) Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. J Power Sources 251:187–194

    Article  CAS  Google Scholar 

  25. Cheng XR, Hau BY, Endo T, Kerman K (2014) Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens Bioelectron 53:513–518

    Article  CAS  Google Scholar 

  26. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications, 2nd edn. Wiley Interscience, Hoboken, pp 68–73

  27. Bisquert J, Compte A (2001) Theory of the electrochemical impedance of anamolous diffusion. J Electroanal Chem 499:112–120

    Article  CAS  Google Scholar 

  28. Ates M (2011) Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog Org Coat 71:1–10

    Article  CAS  Google Scholar 

  29. Buck RP, Mundt C (1999) Origins of finite transmission lines for exact representations of transport by the Nernst-Planck equations for each charge carrier. Electrochim Acta 44:1999–2018

    Article  CAS  Google Scholar 

  30. Lang G, Inzelt G (1999) An advanced model of the impedance of polymer film electrodes. Electrochim Acta 44:2037–2051

    Article  CAS  Google Scholar 

  31. Ehrenbeck C, Juttner K, Ludwig S, Paasch G (1998) The electrochemical impedance of a free-standing polypyrrole membrane. Electrochim Acta 43:42781–42789

    Article  Google Scholar 

  32. Nguyen PH, Paasch G (1999) Transfer matrix method for the electrochemical impedance of inhomogeneous porous electrodes and membranes. J Electroanal Chem 460:63–79

    Article  CAS  Google Scholar 

  33. Rusling JF, Suib SB (1994) Characterizing materials with cyclic voltammetry. Adv Mater 6:922–930

    Article  CAS  Google Scholar 

  34. Ates M, Uludag N (2010) Synthesis and electropolymerization of 9-(4-vinylbenzyl)-9H-carbazole on carbon fiber microelectrode: capacitive behavior of poly(9-(4-vinylbenzyl)-9H-carbazole). Fiber Polym 11:331–337

    Article  CAS  Google Scholar 

  35. Sarac AS, Dogru E, Ates M, Parlak EA (2006) Electrochemical synthesis of N-methylpyrrole and N-methyl carbazole copolymer on carbon fiber microelectrodes and their characterization. Turk J Chem 30:401–418

    CAS  Google Scholar 

  36. Sarac AS, Ates M, Parlak EA, Turcu EF (2007) Characterization of micron-size thin films of electrocoated carbazole with p-Tolylsulfonyl pyrrole on carbon fiber microelectrodes. J Electrochem Soc 154:D283–D291

    Article  CAS  Google Scholar 

  37. Ates M, Yilmaz K, Shahryari A, Omanovic S, Sarac AS (2008) A study of electrochemical behaviorof poly[N-vinylcarbazole] formed on carbon fiber microelectrodes and its response to dopamine. IEEE Sens J 8:1628–1639

    Article  CAS  Google Scholar 

  38. Sarac AS, Ates M, Parlak EA (2006) Electrolyte and solvent effects of electro-coated polycarbazole thin films on carbon fiber microelectrodes. J Appl Electrochem 36:889–898

    Article  CAS  Google Scholar 

  39. Beyazyildirim S, Camurlu P, Yilmaz D, Gullu M, Toppare L (2006) Synthesis and electrochromic properties of conducting dioxocino-and dithiocinoquinoxalines with bithiophene. J Electroanal Chem 587:235–246

    Article  CAS  Google Scholar 

  40. Kham K, Sadki S, Chevrot C (2004) Oxidative electropolymerizations of carbazole derivatives in the presence of bithiophene. Synth Met 145:135–140

    Article  CAS  Google Scholar 

  41. Popkirov GS, Barsoukov E, Schindler RN (1997) Investigation of conducting polymer electrodes by impedance spectroscopy during electropolymerization under galvanostatic conditions. J Electroanal Chem 425:209–216

    Article  CAS  Google Scholar 

  42. Ates M, Sarac AS (2009) Electrochemical impedance spectroscopy of poly(carbazole-co-N-p-tolylsulfonyl pyrrole) on carbon fiber microelectrodes, equivalent circuits for modelling. Prog Org Coat 65:281–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial financial support for this work by the Research Foundation of Namik Kemal University (Turkey) Project number: NKUBAP.00.10.YL.12.02) is gratefully acknowledged. Authors thank to Dr. A. Gokceoren (ITU, Turkey) for FTIR-ATR and S. Tıkız (TUAM, Turkey) for SEM–EDX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Eren, N. Electrochemical copolymerization of carbazole and 2,2′:5′-2″ terthiophene: characterization and micro-capacitor application. Iran Polym J 23, 581–589 (2014). https://doi.org/10.1007/s13726-014-0252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-014-0252-9

Keywords

Navigation