Skip to main content

Advertisement

Log in

A study on high-performance poly(azo-pyridine-benzophenone-imide) nanocomposites via self-reinforcement of electrospun nanofibers

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this study, initially high molecular weight poly(azo-pyridine-benzophenone-imide) (PAPBI) has been fabricated using facile approach. Uniformly aligned electrospun PAPBI and PAPBI/multi-walled carbon nanotube (MWCNT) nanofibers were then produced via electrospinning of desired solutions. Self-reinforcement technique was used to fabricate PAPBI-based nanofiber reinforced films. Uniform dispersion, orientation and adhesion between carbon nanotubes and polymer improved the physical properties of resulting nanocomposites. Fourier transform infrared spectroscopy was used to identify the structures of polymer and self-reinforced nanocomposite films. Scanning and transmission electron microscopy showed that the electrospun PAPBI/MWCNT nanofibers were uniformly aligned and free of defects. Moreover, polyimide matrix was evenly coated on the surface of electrospun nanofibers, thus, preventing the fibers from bundling together. Samples of 1–3 wt% of as-prepared electrospun nanofibers were self-reinforced to enhance the tensile strength of the films. Films of 3 wt% PAPBI/MWCNT nanofiber-based nanocomposite showed higher value in tensile strength (417 MPa) relative to 3 wt% PAPBI nanofibers (361 MPa) reinforced film. Tensile modulus of the PAPBI/MWCNT system was also significantly improved (19.9–22.1 GPa) compared with PAPBI system (13.9–16.2 GPa). Thermal stability of PAPBI/MWCNT nanofibers reinforced polyimide was also superior having 10 % gravimetric loss at 600–634 °C and glass transition temperature 272–292 °C relative to the neat polymer (T 10 545 °C, T g 262 °C) and PAPBI nanofiber-based system (T 10 559–578 °C, T g 264–269 °C). New high-performance self-reinforced polyimide nanocomposites may act as potential contenders for light-weight aerospace materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1–29

    Article  Google Scholar 

  2. Hussain ST, Mazhar M, Gul S, Khan MA (2009) Novel catalyst to manufacture carbon nanotubes and hydrogen gas. Patent US20090208403A1

  3. Sgobba V, Rahman GMA, Ehli C, Guldi DM (2006) Fullerenes principles and applications. In: Langa F, Nierengarten EF (eds) Covalent and noncovalent approaches towards multifunctional carbon-nanotube materials, 15th edn. RSC, Cambridge, pp 329–379

    Google Scholar 

  4. Bocchini S, Frache A, Camino G, Claes M (2007) Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur Polym J 43:3222–3235

    Article  CAS  Google Scholar 

  5. Spitalskya Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  6. Antonucci V, Faiella G, Giordano M, Nicolais L, Pepe G (2007) Electrical properties of single walled carbon nanotube reinforced polystyrene composites. Macromol Symp 247:172–181

    Article  CAS  Google Scholar 

  7. Duan J, Shao S, Li Y, Wang L, Jiang P, Liu B (2012) Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J 21:109–120

    Article  CAS  Google Scholar 

  8. Ghorabi S, Rajabi L, Madaeni SS, Zinadini S, Derakhshan AA (2012) Effects of three surfactant types of anionic, cationic and non-ionic on tensile properties and fracture surface morphology of epoxy/MWCNT nanocomposites. Iran Polym J 21:121–130

    Article  CAS  Google Scholar 

  9. Alimardani M, Abbassi-Sourki F, Bakhshandeh GR (2012) Preparation and characterization of carboxylated styrene butadiene rubber (XSBR)/multiwall carbon nanotubes (MWCNTs) nanocomposites. Iran Polym J 21:809–820

    Article  CAS  Google Scholar 

  10. Zamani MM, Fereidoon A, Sabet A (2012) Multi-walled carbon nanotube-filled polypropylene nanocomposites: high velocity impact response and mechanical properties. Iran Polym J 21:887–894

    Article  CAS  Google Scholar 

  11. Fong H (2004) Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45:2427–2432

    Article  CAS  Google Scholar 

  12. Baji A, Mai YW, Wong SC, Abtahi M, Du X (2010) Mechanical behavior of self assembled carbon nanotube reinforced nylon 6, 6 fibers. Compos Sci Technol 70:1401–1409

    Article  CAS  Google Scholar 

  13. Xuyen NT, Ra EJ, Geng HZ, Kim KK, An KH, Lee YH (2007) Enhancement of conductivity by diameter control of polyimide-based electrospun carbon nanofibers. J Phys Chem B 111:11350–11353

    Article  CAS  Google Scholar 

  14. Tian M, Gao Y, Liu Y, Liao YL, Xu R, Hedin NE, Fong H (2007) Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48:2720–2728

    Article  CAS  Google Scholar 

  15. Hill D, Lin Y, Qu L, Kitaygorodskiy A, Connell JW, Allard LF, Sun YP (2005) Functionalization of carbon nanotubes with derivatized polyimide. Macromolecules 38:7670–7675

    Article  CAS  Google Scholar 

  16. Kaushik AK, Podsiadlo P, Qin M, Shaw CM, Waas AM, Kotov NA, Arruda EM (2009) The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites. Macromolecules 42:6588–6595

    Article  CAS  Google Scholar 

  17. Zhao X, Zhang QH, Chen DJ, Lu P (2010) Enhanced mechanical properties of graphene based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  18. Xiong HM, Xie DP, Guan XY, Tan YJ, Xia YY (2007) Water-stable blue-emitting ZnO@polymer core-shell microspheres. J Mater Chem 17:2490–2496

    Article  CAS  Google Scholar 

  19. Coleman JN, Khan U, Gunko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  20. Verker R, Grossman E, Gouzman I, Eliaz N (2009) Trisilanolphenyl POSS-polyimide nanocomposites: structure–properties relationship. Compos Sci Technol 69:2178–2184

    Article  CAS  Google Scholar 

  21. Bedi R, Chandra R (2009) Fatigue-life distributions and failure probability for glass fiber reinforced polymeric composites. Compos Sci Technol 69:1381–1387

    Article  CAS  Google Scholar 

  22. Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R (2007) Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon 45:2037–2046

    Article  CAS  Google Scholar 

  23. Qu L, Lin Y, Hill DE, Zhou B, Wang W, Sun X, Kitaygorodskiy A, Suarez M, Connell JW, Allard LF, Sun YP (2004) Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules 37:6055–6060

    Article  CAS  Google Scholar 

  24. Zhang F, Srinivasan MP (2007) Multilayered gold-nanoparticle/polyimide composite thin film through layer-by-layer assembly. Langmuir 23:10102–10108

    Article  CAS  Google Scholar 

  25. Chang Z, Xu Y, Zhao X, Zhang Q, Chen D (2009) Grafting poly(methyl methacrylate) onto polyimide nanofibers via “click” reaction. Appl Mater Interface 1:2804–2811

    Article  CAS  Google Scholar 

  26. Kausar A, Hussain ST (2013) Effect of multi-walled carbon nanotubes reinforcement on the physical properties of poly(thiourea-azo-ether)-based nanocomposites. J Plast Film Sheet 29:365–383

    Article  Google Scholar 

  27. Kausar A, Hussain ST (2013) Synthesis and properties of poly(thiourea-azo-naphthyl)/multiwalled carbon nanotube composites. J Plast Film Sheet (published online 30 April 2013) doi:10.1177/8756087913483650

  28. Deitzel JM, Kosik W, McKnight SH, Ten NCB, Desimone JM, Crette S (2002) Electrospinning of polymer nanofibers with specific surface chemistry. Polymer 43:1025–1029

    Article  CAS  Google Scholar 

  29. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mat Sci Eng A Struct 334:173–178

    Article  Google Scholar 

  30. Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci Polym Phys 40:1261–1268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Kausar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kausar, A. A study on high-performance poly(azo-pyridine-benzophenone-imide) nanocomposites via self-reinforcement of electrospun nanofibers. Iran Polym J 23, 127–136 (2014). https://doi.org/10.1007/s13726-013-0208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0208-5

Keywords

Navigation