Skip to main content
Log in

Effect of particle size on thermomechanical properties of particulate polymer composite

  • Original Article
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Particulate composite materials (PCM) consisting of a matrix reinforced by micro to nano-sized dispersed phase are receiving the attention of designers as a promising futuristic materials. This study unearths the thermal and mechanical behavior of maleic anhydride grafted polypropylene/silica (MA-g-PP/silica) composites for reinforcement ranging from micro- to nano-size. The monodisperse silica spherical particles were used in all the formulations of composites. Further the volume fraction was kept the same in all the compounded thermoplastic composites ranging from 100 nm to 130 μm in a co-rotating conical twin-screw micro-compounder. The micrographs were obtained from transmission electron microscopy (TEM) and the scanning electron microscopy (SEM). The SEM and TEM results revealed a good dispersion of the silica spheres within the MA-g-PP matrix. The compounded composite materials were injection molded to fabricate tensile test specimens (ASTM D638 type V) and tested for tensile properties. In order to investigate the effect of particle size on crystallite structure of the matrix, the composites were tested on differential scanning calorimeter and X-ray diffraction (WAXD). The thermal stability and degradation kinetics were studied via thermogravimetric analysis. The results show increase in crystallization rate, crystallinity percentage, Young’s modulus, strength and thermal stability of MA-g-PP by addition of the silica particles. Further it was observed that the small-sized dispersed phase had better overall thermal and mechanical behavior than its larger sized counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Juhasz JA, Best SM, Brooks R, Kawashita M, Miyata N, Kokubo T, Nakamura T, Bonfield W (2004) Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials 25:949–955

    Article  CAS  Google Scholar 

  2. Cho J, Joshi MS, Sun CT (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos Sci Technol 66:1941–1952

    Article  CAS  Google Scholar 

  3. Mishra S, Sonawane SH, Singh RP (2005) Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP–nano CaCO3 composites. J Polym Sci Part B Polym Phys 43:107–113

    Article  CAS  Google Scholar 

  4. Nakamura Y, Yamaguchi M, Okubo M, Matsumoto T (1992) Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J Appl Polym Sci 45:1281–1289

    Article  CAS  Google Scholar 

  5. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J (2001) Nano fillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42:8759–8768

    Article  CAS  Google Scholar 

  6. Wu GH, Chen GQ, Zhu DZ, Zhang Q, Jiang LT (2005) Effect of particle size on thermo-physical properties of SiCp/Cu composites fabricated by squeeze casting. Trans Nonferrous Met Soc China 15:217–220

    CAS  Google Scholar 

  7. Shiratori Y, Magrez A, Pithan Ch (2005) Particle size effect on the crystal structure symmetry of K0.5Na0.5NbO3. J Eur Ceram Soc 25:2075–2079

    Article  CAS  Google Scholar 

  8. Sreekanth MS, Bambole Mhaske ST, Mahanwar PA (2009) Effect of concentration of mica on properties of polyester thermoplastic elastomer composites. J Mineral Mater Charact Eng 8:271–282

    Google Scholar 

  9. Ha SR, Ryu SH, Park SJ, Rhee KY (2007) Effect of clay surface modification and concentration on the tensile performance of clay/epoxy nanocomposites. Mater Sci Eng A 448:264–268

    Article  Google Scholar 

  10. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP (2006) Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47:7740–7746

    Article  CAS  Google Scholar 

  11. Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63:2055–2067

    Article  CAS  Google Scholar 

  12. Goyanes SN, Konig PG, Marconi JD (2003) Dynamic mechanical analysis of particulate-filled epoxy resin. J Appl Polym Sci 88:883–892

    Article  CAS  Google Scholar 

  13. Park SJ, Jin FL, Lee C (2005) Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins. Mater Sci Eng A 402:335–340

    Article  Google Scholar 

  14. Goyal RK, Tiwari AN, Mulik UP, Negi YS (2007) Effect of aluminum nitride on thermomechanical properties of high performance PEEK. Compos Part A Appl Sci Manuf 38:516–524

    Article  Google Scholar 

  15. Hu YH, Chen CY, Wang CC (2004) Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab 84:545–553

    Article  CAS  Google Scholar 

  16. Zhou YX, Pervin F, Rangari VK, Jeelani S (2006) Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite. Mater Sci Eng A 426:221–228

    Article  Google Scholar 

  17. Basara G, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98:1081–1086

    Article  CAS  Google Scholar 

  18. Ash BJ, Siegel RW, Schadler LS (2005) Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci Part B Polym Phys 42:4371–4383

    Article  Google Scholar 

  19. Preghenella M, Pegoretti A, Migliaresi C (2005) Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer 46:12065–12072

    Article  CAS  Google Scholar 

  20. Huang YQ, Jiang SL, Wu LB, Hua YQ (2004) Characterization of LLDPE/nano-SiO2 composites by solid-state dynamic mechanical spectroscopy. Polym Test 23:9–15

    Article  Google Scholar 

  21. Sandler J, Werner P, Shaffer MS, Demchuk V (2002) Carbon-nanofibre-reinforced poly(ether ether ketone) composites. Compos Part A Appl Sci Manuf 33:1033–1039

    Article  Google Scholar 

  22. Bragato G, Gianotti G (1983) High speed spinning of poly(ethylene terephthalate)—II: orientation induced mechanism of cold crystallization in pre-orientated yarns. Eur Polym J 19:803–809

    Article  CAS  Google Scholar 

  23. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, New York, ISBN: 3527303596

  24. Kamigaito O (1994) What can be improved by nanometer composites? J Jpn Soc Powder Metall 38:315–321

    Article  Google Scholar 

  25. Dekkers MEJ, Heikens D (1983) The effect of interfacial adhesion on the tensile behavior of polystyrene–glass-bead composites. J Appl Polym Sci 28:3809–3815

    Article  CAS  Google Scholar 

  26. Fu SY, Lauke B (1998) Characterization of tensile behavior of hybrid short glass fiber calcite particle ABS composites. Compos A 29:575–583

    Article  Google Scholar 

  27. Radford KC (1971) The mechanical properties of an epoxy resin with a second phase dispersion. J Mater Sci 6:1286–1291

    Article  CAS  Google Scholar 

  28. Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos B 37:425–436

    Article  Google Scholar 

  29. Yang J, Sang Y, Chen F, Fei Z, Zhong M (2012) Synthesis of silica particles grafted with poly ionic liquid and their nucleation effect on microcellular foaming of polystyrene using supercritical carbon dioxide. J Supercrit Fluids 62:197–203

    Article  CAS  Google Scholar 

  30. Rousseaux DJ, Sclavons M, Godard P, Marchand-Brynaert J (2012) Tuning the functionalization chemistry of polypropylene for polypropylene/clay nanocomposites. React Funct Polym 72:17–24

    Article  CAS  Google Scholar 

  31. Modesti M, Lorenzetti A, Bon D, Besco S (2006) Thermal behaviour of compatibilised polypropylene nanocomposite: effect of processing conditions. Polym Degrad Stab 91:672–680

    Article  CAS  Google Scholar 

  32. Kumar S, Choudhary V, Kumar R (2010) Study on compatibility of unbleached and bleached bamboo fiber with LLDPE matrix. J Therm Anal Calorim 102:751–761

    Article  CAS  Google Scholar 

  33. Hsueh CH (1987) Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. J Am Ceram Soc 72:344–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hossein Alaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alaei, M.H., Mahajan, P., Brieu, M. et al. Effect of particle size on thermomechanical properties of particulate polymer composite. Iran Polym J 22, 853–863 (2013). https://doi.org/10.1007/s13726-013-0184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0184-9

Keywords

Navigation