Skip to main content
Log in

Direct synthesis of polymer-grafted inorganic hybrids via reversible chain transfer catalyzed polymerization

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, a new simple and robust method for preparation of polymer-grafted inorganic hybrids through “grafting to” reaction is presented. Polymer chains were synthesized by reversible chain transfer catalyzed polymerization (RTCP) are capped with iodine according to the RTCP mechanism. The obtained iodine-capped polymer chains can react irreversibly with the hydroxyl groups available on the surface of inorganic materials through a nucleophilic substitution (SN) reaction. In this method, there is no need to modify the surface of inorganic materials or to functionalize polymer chains prior to the “grafting to” reaction. RTCP produced polystyrenes with different molecular weights, e.g., 4,000, 6,000, and 8,000 g/mol, and silica nanoparticles were employed as the polymer and inorganic materials, respectively. The resulting hybrids were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, and transmission electron microscopy techniques. According to the results, graft density decreased by increasing the polystyrene molecular weight. Additionally, the rheological studies of prepared polystyrene nanocomposites containing 2 wt % of the produced hybrids confirmed the better dispersion of the modified hybrids in the polystyrene matrix. The glass transition temperature (T g) of the polystyrene nanocomposites was driven by differential scanning calorimeter technique. Analysis of nanocomposites’ T g results revealed that increment of the grafted polymer molecular weight of hybrids increased the glass transition temperature of the prepared nanocomposites due to improvement of the dispersion level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  Google Scholar 

  2. Akcora P, Kumar SK, Moll J, Lewis S, Schadler LS, Li Y, Benicewicz BC, Sandy A, Narayanan S, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2010) “Gel-like” Mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43:1003–1010

    Article  CAS  Google Scholar 

  3. Kwon T, Kim T, Ali FB, Kang DJ, Yoo M, Bang J, Lee W, Kim BJ (2011) Size-controlled polymer-coated nanoparticles as efficient compatibilizers for polymer blends. Macromolecules 44:9852–9862

    Article  CAS  Google Scholar 

  4. Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer–particle interface. J Polym Sci Part B: Polym Phys 44:2944–2950

    Article  CAS  Google Scholar 

  5. Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqani H (2012) A study on the properties of PMMA/Silica nanocomposites prepared via RAFT polymerization. J Polym Res 19:9793–9803

    Article  Google Scholar 

  6. Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaqani H (2012) Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J Polym Res 19:9954–9969

    Article  Google Scholar 

  7. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114

    Article  CAS  Google Scholar 

  8. Lyatskaya Y, Balazs AC (1998) Modeling the phase behavior of polymer–clay composites. Macromolecules 31:6676–6680

    Article  CAS  Google Scholar 

  9. Pyun J, Matyjaszewski K (2001) Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“Living” radical polymerization. Chem Mater 13:3436–3448

    Article  CAS  Google Scholar 

  10. Radhakrishnan B, Ranjan R, Brittain WJ (2006) Surface initiated polymerizations from silica nanoparticles. Soft Matter 2:386–396

    Article  CAS  Google Scholar 

  11. Brittain WJ, Boyes SG, Granville AM, Baum M, Mirous BK, Akgun B et al (2006) Surface rearrangement of diblock copolymer brushes-stimuli responsive films. Adv Polym Sci 198:125–147

    Article  CAS  Google Scholar 

  12. Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Properties of PMMA/Carbon nanotubes nanocomposites prepared by “grafting through” method. Polym Compos 33:215–224

    Article  CAS  Google Scholar 

  13. Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773–9784

    Article  Google Scholar 

  14. Wang WS, Chen HS, Wu YW, Tsai TY, Chen-Yang YW (2008) Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay. Polymer 49:4826–4836

    Article  CAS  Google Scholar 

  15. Yang Y, Yang Z, Zhao Q, Cheng X, Tjong SC, Li RKY, Wang X, Xie X (2009) Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surface-initiated RAFT polymerization. J Polym Sci Part A: Polym Chem 47:467–484

    Article  CAS  Google Scholar 

  16. Hideki S, Kazuki D, Eiji N, Yutaka O, Takashi Y, Katsuhiro I (2006) Preparation and properties of poly (methylmethacrylate)–silica hybrid materials incorporating reactive silica nanoparticles. Polymer 47:3754–3759

    Article  Google Scholar 

  17. Zhao B, Brittain WJ, Zhou W, Cheng SZD (2000) Nanopattern formation from tethered PS-b-PMMA brushes upon treatment with selective solvents. J Am Chem Soc 122:2407–2408

    Article  CAS  Google Scholar 

  18. Zhou QY, Wang SX, Fan XW, Advincula R (2002) Living anionic surface-initiated polymerization (LASIP) of a polymer on silica nanoparticles. Langmuir 18:3324–3331

    Article  CAS  Google Scholar 

  19. Yang Y, Wu D, Li C, Liu L, Cheng X, Zhao H (2006) Poly (l-lactide) comb polymer brushes on the surface of clay layers. Polymer 47:7374–7381

    Article  CAS  Google Scholar 

  20. Jubert M, Delite C, Bourgeat-Lami E, Dumas P (2004) Ring-opening polymerization of ε-caprolactone and L-lactide from silica nanoparticles surface. J Polym Sci Part A: Polym Chem 42:1976–1984

    Article  Google Scholar 

  21. Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188

    Article  CAS  Google Scholar 

  22. Hong CY, You YZ, Pan CY (2006) A new approach to functionalize multi walled carbon nanotubes by the use of functional polymers. Polymer 47:4300–4309

    Article  CAS  Google Scholar 

  23. Tchoul MN, Dalton M, Tan LS, Dong H, Hui CM, Matyjaszewski K, Vaia RA (2012) Enhancing the fraction of grafted polystyrene on silica hybrid nanoparticles. Polymer 53:79–86

    Article  CAS  Google Scholar 

  24. Bartholome C, Beyou E, Bourgeat-Lami E, Chaumont P, Zydowicz N (2005) Nitroxide-mediated polymerization of styrene initiated from the surface of silica nanoparticles in situ generation and grafting of alkoxyamine initiators. Macromolecules 38:1099–1106

    Article  CAS  Google Scholar 

  25. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2010) Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym Comp 31:1829–1837

    Article  CAS  Google Scholar 

  26. El Harrak A, Carrot G, Oberdisse J, Jestin J, Boue F (2005) Atom transfer radical polymerization from silica nanoparticles using the “grafting from” method and structural study via small-angle neutron scattering. Polymer 46:1095–1104

    Article  Google Scholar 

  27. Li C, Han J, Ryu CY, Benicewicz BC (2006) A versatile method to Prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 39:3175–3183

    Article  CAS  Google Scholar 

  28. Titirici M, Sellergren B (2006) Thin molecularly imprinted polymer films via reversible addition—fragmentation chain transfer Polymerization. Chem Mater 18:1773–1779

    Article  CAS  Google Scholar 

  29. Hong CY, Li X, Pan CY (2007) Grafting polymer nanoshell onto the exterior surface of mesoporous silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Eur Polym J 43:4114–4122

    Article  CAS  Google Scholar 

  30. Xie XL, Li BG, Pan ZR, Li RKY, Tjong SC (2001) Effect of Talc/MMA in situ polymerization on mechanical properties of PVC-matrix composites. J Appl Polym Sci 80:2105–2112

    Article  CAS  Google Scholar 

  31. Xie XL, Liu QX, Li RKY, Zhou XP, Zhang QX, Yu ZZ, Mai YW (2004) Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer 45:6665–6673

    Article  CAS  Google Scholar 

  32. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Synthesis of clay-dispersed poly (styrene-co-methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: a reverse rpproach. J Appl Polym Sci 124:2278–2286

    Article  CAS  Google Scholar 

  33. Kotal A, Mandel TK, Walt DR (2005) Synthesis of gold–poly (methyl methacrylate) core–shell nanoparticles by surface-confined atom transfer radical polymerization at elevated temperature. J Polym Sci Part A: Polym Chem 43:3631–3642

    Article  CAS  Google Scholar 

  34. Karim MR, Lim KT, Lee CJ, Bhuiyan MTI, Kim HJ, Park LS, Lee MS (2007) Synthesis of core–shell silver–polyaniline nanocomposites by gamma radiolysis method. J Polym Sci Part A: Polym Chem 45:5741–5747

    Article  CAS  Google Scholar 

  35. Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Properties of matrix-grafted multi walled carbon nanotube/poly (methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. J Iranian Chem Soc 9:877–887

    Article  CAS  Google Scholar 

  36. Yuan WZ, Mao Y, Zhao H, Sun JZ, Xu HP, Jin JK, Zheng Q, Tang BZ (2008) Electronic interactions and polymer effect in the functionalization and solvation of carbon nanotubes by pyrene- and ferrocene-containing poly (1-alkyne)s. Macromolecules 41:701–707

    Article  CAS  Google Scholar 

  37. Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix grafted multi walled carbon nanotubes/poly (methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetics study. Int J Chem Kinet 44:555–569

    Article  CAS  Google Scholar 

  38. Rotzoll R, Vana P (2008) Synthesis of poly (methyl acrylate) loops grafted onto silica nanoparticles via reversible addition-fragmentation chain transfer polymerization. J Polym Sci Part A: Polym Chem 46:7656–7666

    Article  CAS  Google Scholar 

  39. Duchateau R (2002) Incompletely condensed silsesquioxanes: versatile tools in developing silica-supported olefin polymerization catalysts. Chem Rev 102:3525–3542

    Article  CAS  Google Scholar 

  40. Goto A, Zushi H, Hirai N, Wakada T, Tsujii Y, Fukuda T (2007) Living radical polymerizations with Germanium, Tin, and Phosphorus Catalysts: reversible chain transfer catalyzed polymerizations (RTCPs). J Am Chem Soc 129:13347–13354

    Article  CAS  Google Scholar 

  41. Goto A, Tsujii Y, Fukuda T (2008) Reversible chain Transfer catalyzed polymerization (RTCP): a new class of living radical polymerization. Polymer 49:5177–5185

    Article  CAS  Google Scholar 

  42. Goto A, Hirai N, Wakada T, Nagasawa K, Tsujii Y, Fukuda T (2008) Living radical polymerization with nitrogen catalyst: reversible chain transfer catalyzed polymerization with N-Iodosuccinimide. Macromolecules 41:6261–6264

    Article  CAS  Google Scholar 

  43. Goto A, Wakada T, Tsujii Y, Fukuda T (2010) A systematic kinetic study in reversible chain transfer catalyzed polymerizations (RTCPs) with Germanium, Tin, Phosphorus, and Nitrogen catalysts. Macromol Chem Phys 211:594–600

    Article  CAS  Google Scholar 

  44. Goto A, Vana P (2010) Kinetic simulation of reversible chain transfer catalyzed polymerization (RTCP): guidelines to optimum molecular weight control. Macromol Theory Simul 19:24–35

    Google Scholar 

  45. Matyjaszewski K, Gaynor S, Wang JS (1995) Controlled radical polymerizations: the use of alkyl iodides in degenerative transfer. Macromolecules 28:2093–2095

    Article  CAS  Google Scholar 

  46. Ek S, Root A, Peussa M, Niinisto L (2001) Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim Acta 379:201–212

    Article  CAS  Google Scholar 

  47. Liu CH, Pan CY (2007) Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer 48:3679–3685

    Article  CAS  Google Scholar 

  48. Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33:14–22

    Article  CAS  Google Scholar 

  49. Bartholome C, Beyou E, Bourgeat-Lami E, Cassagnau P, Chaumont P, David L, Zydowicz N (2005) Viscoelastic properties and morphological characterization of silica/polystyrene nanocomposites synthesized by nitroxide-mediated polymerization. Polymer 46:9965–9973

    Article  CAS  Google Scholar 

  50. Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Haddadi-Asl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afsharian-Moghaddam, H., Haddadi-Asl, V. Direct synthesis of polymer-grafted inorganic hybrids via reversible chain transfer catalyzed polymerization. Iran Polym J 22, 757–766 (2013). https://doi.org/10.1007/s13726-013-0176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0176-9

Keywords

Navigation