Skip to main content

TG/FTIR/MS study on the influence of nanoparticles content upon the thermal decomposition of starch/poly(vinyl alcohol) montmorillonite nanocomposites

Abstract

The effect of the nanoclay content on the thermal decomposition of nanocomposites based on poly(vinyl alcohol)/thermoplastic starch, as intercalated hybrids, has been established. The changes in the decomposition products distribution and their evolution have been investigated by coupled thermogravimetric analysis, Fourier transform infrared spectroscopy, and mass spectrometry. Detailed analysis of the in situ vapor phase showed that the poly(vinyl alcohol)/starch/clay nanocomposites display a completely different distribution pattern of degradation product, depending on nanoclay content. By in situ vapor phase FTIR and MS spectroscopic techniques, both decomposition compounds of the constituent polymers and some new ones, depending on the nanoparticles content, are identified. The effect of the increase in nanoparticles content consists mainly in variation of some volatile compounds evolution, such as formic acid, water, formaldehyde, propionic acid, methanol, acetic acid carbon dioxide, benzene, etc., which in the case of nanocomposites is very complex. Thus, a content of 2–4 wt% organically-modified montmorillonite hinders the decomposition of the poly(vinyl alcohol)/starch blend. Both characteristic temperature of evolution of the main compounds increases by increasing its content and evolution starting time is delayed; while the untreated nanoclay acts like a catalyst, which decreases characteristic temperatures and evolution time with increasing its content. The temperature dependence of the maximum evolution rate of various compounds on the nanoclay content is very complex as, in the case of nanocomposites, of both primary and secondary reactions and transport phenomena occur simultaneously. Generally, this behavior is related to the dispersion of nanoclays in the polymeric matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Suprakas SR, Masami O (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  2. Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. Smithers Rapra Publishing, Shawbury

    Google Scholar 

  3. Pielichowski J, Pielichowski K (1995) Application of thermal analysis for the investigation of polymer degradation processes. J Therm Anal 43:505–508

    Article  CAS  Google Scholar 

  4. Ahmadi M, Moghbeli MR, Shokrieh MM (2012) Shrinkage and mechanical properties of unsaturated polyester reinforced with clay and core–shell rubber. Iran Polym J 21:855–868

    Article  CAS  Google Scholar 

  5. Wu G, Yang F, Tan Z, Ge H, Zhang H (2012) Synthesis of montmorillonite-modified acrylic impact modifiers and toughening of poly(vinyl chloride). Iran Polym J 21:793–798

    Article  CAS  Google Scholar 

  6. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties. Part I: factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96

    Article  Google Scholar 

  7. Guo B, Jia D, Cai C (2004) Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. Eur Polym J 40:1743–1748

    Article  CAS  Google Scholar 

  8. Lim ST, Hyun YH, Choi HJ, John MS (2002) Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem Mater 14:1839–1844

    Article  CAS  Google Scholar 

  9. Lim ST, Lee CH, Choi HJ, John MS (2003) Solid-like transition of melt-intercalated biodegradable polymer/clay nanocomposites. J Polym Sci Part B Polym Phys 41:2052–2061

    Article  CAS  Google Scholar 

  10. Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450

    Article  CAS  Google Scholar 

  11. Hui-Wang C, Guan-Ben D (2008) Application of MMT in polyesters. Ind Mine Process 7:27–32

    Google Scholar 

  12. Hui-Wang C, Guan-Ben D (2009) Practice of PVAc type curing agent for UF resin in plywood production. Adhes in China 30:52–54

    Google Scholar 

  13. Patachia S (2003) Blends based on poly(vinyl alcohol) and the products based on this polymer, Chap. 8 in Handbook of polymer blends and composites, Vasile C, AK Kulshereshtha (Eds.). Rapra Technol 4A:285–365

    Google Scholar 

  14. Preechawong D, Peesan M, Rujiravanit R, Supaphol P (2004) Preparation and properties of starch/poly(vinyl alcohol) composite foams. Macromol Symp 216:217–227

    Article  CAS  Google Scholar 

  15. Sreedhar B, Sairam M, Chattopadhhyay DK, Syamala RPA, Mohan Rao DV (2005) Thermal, mechanical, and surface characterization of starch/poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci 96:1313–1322

    Article  CAS  Google Scholar 

  16. Follain N, Joly C, Dole P, Bliard C (2005) Properties of starch based blends. Part 2. Influence of poly vinyl alcohol addition and photocrosslinking on starch based materials mechanical properties. Carbohydr Polym 60:185–192

    Article  CAS  Google Scholar 

  17. Cinelli P, Chellini E, Gordon SH, Imam SH (2003) Characteristics and degradation of hybrid composite films prepared from PVA, starch and lignocellulosics. Macromol Symp 197:143–156

    Article  CAS  Google Scholar 

  18. Nistor M-T, Vasile C (2013) Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim 111:1903–1919

    Google Scholar 

  19. Dimonie D, Constantin R, Vasilievici G, Popescu MC, Garea S (2008) The dependence of the XRD morphology of some bionanocomposites on the silicate treatment. J Nanomater, Article ID 538421

  20. Dimonie D, Radovici C, Trandafir I, Pop SF, Dumitriu I, Fierascu R, Jecu L, Petrea C, Zaharia C, Coşerea R (2011) Some aspects concerning the silicate delamination for obtaining polymeric bio-hybrids based on starch. Rev Roum Chim 56:685–690

    CAS  Google Scholar 

  21. Dimonie D, Socoteanu R, Doncea S, Pop FS, Petre C, Dumitriu I, Fierascu R (2011) The miscibility estimation of some nanocomposites based on starch. e-Polymers 90

  22. Dimonie D, Kelnar I, Socoteanu R, Darie RN, Pop FS, Zaharia C, Petrea C, Nemteanu M, Coserea RM (2010) The influence of miscibility and micro–structure on the surface defects of some starch bio–hybrides. Materiale Plastice 47:486–491

    CAS  Google Scholar 

  23. Pascu M-C, Popescu M-C, Vasile C (2008) Surface modifications of some nanocomposites containing starch. J Phys D: Appl Phys 41:175407

    Google Scholar 

  24. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B: Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  25. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  26. Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposites materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450

    Article  CAS  Google Scholar 

  27. Zhai H, Xu W, Guo H, Zhou Z, Shen S, Song Q (2004) Preparation and characterization of PE and PE-g-MAH/montmorillonite nanocomposites. Eur Polym J 40:2539–2545

    Article  CAS  Google Scholar 

  28. Tang Y, Hu Y, Song L, Zong R, Gui Z, Chen Z, Fan W (2003) Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym Degrad Stabil 82:127–131

    Article  CAS  Google Scholar 

  29. Qin H, Zhang S, Zhao C, Feng M, Yang M, Shu Z, Yang S (2004) Thermal stability and flammability of polypropylene/montmorillonite composites. Polym Degrad Stabil 85:807–813

    Article  CAS  Google Scholar 

  30. Wang J, Chen Y, Wang J (2006) Preparation and properties of a novel elastomeric polyurethane/organic montmorillonite nanocomposite. J Appl Polym Sci 99:3578–3585

    Article  CAS  Google Scholar 

  31. Vasile C, Stoleriu A, Popescu MC, Duncianu C, Kelnar I, Dimonie D (2008) Morphology and thermal properties of some green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. Cell Chem Tech 42:549–568

    CAS  Google Scholar 

  32. Gilman JW, VanderHart DL, Kashiwagi T (1994) Thermal decomposition chemistry of poly(vinyl alcohol) char characterization and reactions with bismaleimides, Chapter 11 in Fire and Polymers. II: materials and test for hazard prevention. Am Chem Soc. ACS Symp Ser 599(11):161

    Google Scholar 

  33. Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50:3912–3918

    Article  CAS  Google Scholar 

  34. Zhang X, Golding J, Burger I (2002) Thermal decomposition chemistry of starch studied by 13C high resolution solid-state NMR spectroscopy. Polymer 43:5791–5796

    Article  CAS  Google Scholar 

  35. Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci: Mater Medicine 14:127–135

    Article  CAS  Google Scholar 

  36. Bryce DJ, Greenwood CT (1963) The thermal degradation of starch. Part III. The formation of decomposition products from starch and related materials at temperatures between 175 °C and 400 °C. Starch-Stärke 15:359–363

    Article  CAS  Google Scholar 

  37. Su S, Wilkie CA (2004) The thermal degradation of nanocomposites that contain an oligomeric ammonium cation on the clay. Polym Degrad Stabil 83:347–362

    Article  CAS  Google Scholar 

  38. Zheng P, Ling XK (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stabil 92:1061–1071

    Article  Google Scholar 

  39. Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stabil 93:260–262

    Article  CAS  Google Scholar 

  40. Zhou XY, Jia DM, Cui YF, Xie D (2009) Kinetics analysis of thermal degradation reaction of PVA and PVA/starch blends. J Reinf Plast Compos 28:2771–2780

    Article  CAS  Google Scholar 

  41. NIST Mass Spec Data Center, SE Stein (2005) “Mass Spectra” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. In: PJ Linstrom, WG Mallard (eds), National Institute of Standards and Technology, Gaithersburg, 20899. (http://webbook.nist.gov)

  42. Glagovich N, (2007) Mass Spectrometry. http://www.chemistry.ccsu.edu/glagovich/teaching/316/index.html

  43. Tietz M, Buettner A, Conde-Petit B (2008) Changes in structure and aroma release from starch–aroma systems upon α-amylase addition. Eur Food Res Technol 227:1439–1446

    Article  CAS  Google Scholar 

  44. Tietz M, Buettner A, Conde-Petit B (2008) Interaction between starch and aroma compounds as measured by proton transfer reaction mass spectrometry (PTR-MS). Food Chem 108:1192–1199

    Article  CAS  Google Scholar 

  45. Jang BN, Wilkie CA (2005) The thermal degradation of polystyrene nanocomposites. Polymer 46:2933–2942

    Article  CAS  Google Scholar 

  46. Jang BN, Wilkie CA (2005) The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites. Polymer 46:3264–3274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Manuela-Tatiana Nistor thanks the financial support to Romanian National Authority for Scientific Research, CNCS–UEFISCDI, through PN-II-ID-PCE-2011-3-0187 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Vasile.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nistor, MT., Vasile, C. TG/FTIR/MS study on the influence of nanoparticles content upon the thermal decomposition of starch/poly(vinyl alcohol) montmorillonite nanocomposites. Iran Polym J 22, 519–536 (2013). https://doi.org/10.1007/s13726-013-0152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0152-4

Keywords

  • Polymer matrix composites
  • Thermal analysis
  • Nanocomposites
  • Poly(vinyl alcohol)
  • Starch
  • Nanoclay