Abstract
An open-celled structure was produced using polystyrene and supercritical carbon dioxide in a novel batch process. The required processing conditions to achieve open-celled structures were predicted by a theoretical model and confirmed by the experimental data. The theoretical model predicts that at least a saturation pressure of 130 bar and a foaming time between 9 and 58 s are required for this system to produce an open-celled structure. The foaming temperature range has been selected to be higher than the polymer glass transition temperature yet not higher than a temperature limit where the gas starts leaving the system. The experimental results in the batch foaming process verified the model substantially. The SEM pictures showed the presence of pores between the cells, and the mercury porosimetry test results verified the overall open-celled structure. Experimental results also showed that by increasing the saturation pressure and the foaming temperature, there was a drop in the time required for open-celled structure formation. At saturation pressure of 130 bar, foaming temperature of 150 °C and a foaming time of 60 s, open-celled microcellular polystyrene foams were obtained using supercritical CO2 in the batch process. Based on the results, a schematic diagram, depicting the process of foam structure formation from nucleation to bubble coalescence and gas escape from polymer, was proposed. Theoretical calculations showed that by increasing foaming time, cell size was increased and cell density was reduced and the experimental results verified this prediction.
This is a preview of subscription content,
to check access.













Similar content being viewed by others
References
Lee ST, Ramesh NS (2004) Polymeric foams: mechanisms and materials. CRC, Boca Raton 1
Martini JE, Waldman FA, Suh NP (1982) The production and analysis of microcellular thermoplastic foam. ANTEC, 82 SPE Tech Pap 28:674–676
Martini JE (1981) The production and analysis of microcellular foam. MSc Thesis, Massachusetts Institute of Technology
Martini JE, Suh NP, Waldman FA (1984) Microcellular closed cell foams and their method of manufacture. US Patent 4(473):665
Xiangmin Han ME (2003) Continuous production of microcellular foams. PhD Thesis, the Ohio State University
Holl MR (1995) Dynamic analysis measurement and control of cell growth in solid state polymeric foams. PhD Thesis, University of Washington
Faruk O, Bledzki KA, Matuana ML (2007) Microcellular foamed wood-plastic composites by different processes: a review. Macromol Mater Eng 292:113–127
Kumar V (2005) Phenomenology of bubble nucleation in the solid-state nitrogen-polystyrene system. Colloid Surf A 263:336–340
Krause B (2001) Polymer nanofoams. PhD Thesis, University of Twente
Reignier J, Huneault MA (2006) Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47:4703–4717
Zhou C, Ma L, Li W, Yao D (2011) Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends. Biofabrication 3:045003
Wang X, Li W, Kumar V (2009) Creating open-celled solid-state foams using ultrasound. J Cell Plast 45:353–369
Li W, Wang H, Kumar V, Matula T (2012) Method of selective foaming for porous polymeric material. US Patent 201220091632
Kim DW, Hwang SS, Hong SM, Yoo HO, Hong SP (2001) Optimization of foaming process using triblock polyimides with thermally liable blocks. Polymer 42:83–92
Baker RW (2000) Membrane technology and application. McGrow Hill, New York 3
Tate D (1994) Continuous production of microcellular foams. MSc Thesis, Massachusetts Institute of Technology
Huang Q, Seibig B, Paul D (1999) Polycarbonate hollow fiber membranes by melt extrusion. J Membr Sci 161:287–291
Rodeheaver BA, Colton JS (2001) Open-celled microcellular thermoplastic foam. Polym Eng Sci 41:380–400
Krause B, Boerrigter ME, van der Vegt NFA, Strathmann H, Wessling M (2001) Novel open-celled polysulfone morphologies produced with trace concentrations of solvents as pore opener. J Membr Sci 187:181–192
Krause B, Münüklü P, van der Vegt NFA, Wessling M, Sijbesma HP (2001) Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules 34:8792–8801
Park CB, Padareva V, Lee PC, Naguib HE (2005) Extruded open-celled LDPE- based foams using non-homogeneous melt structure. J Polym Eng 25:239–260
Lee PC, Wang J, Park CB (2006) Extruded open-celled foams using two semicrystalline polymers with different crystallization temperatures. J Appl Polym Sci 102:3376–3384
Huang Q, Seibig B, Paul D (2000) Melt extruded open-cell microcellular foams for membrane separation: processing and cell morphology. J Cell Plast 36:112–125
Janani H, Famili MHN (2010) Investigation of a strategy for well controlled inducement of microcellular and nanocellular morphologies in polymers. Polym Eng Sci 50:1558–1570
Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27:493–499
Park HS (2007) Surface tension measurement of polystyrene in supercritical fluids. PhD Thesis, University of Waterloo
Matuana LM, Park CB, Balatinecz J (1997) Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. J Polym Eng Sci 37:1137–1147
Famili MHN, Janani H, Enayati MS (2011) Foaming of a polymer-nanoparticle system: effect of the particle properties. J Appl Polym Sci 119:2847–2856
Kumar V, Suh N (1990) A processing of making microcellular thermoplastic parts. Polym Eng Sci 30:1323–1329
Krause B, Mettinkhof R, van der Vegt NFA, Wessling M (2001) Microcellular foaming of amorphous high-Tg polymers using carbon dioxide. Macromolecules 34:874–884
Park CB, Behravesh AH, Venter RD (1998) Low density microcellular foam processing extrusion using CO2. Polym Eng Sci 38:1812–1823
Kumar V, Weller J (1994) Production of microcellular polycarbonate using carbon dioxide for bubble nucleation. J Eng Ind 116:413–420
Acknowledgments
The authors wish to thank Tarbiat Modares University due to financial and logistics supports.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Enayati, M., Famili, M.H.N. & Janani, H. Open-celled microcellular foaming and the formation of cellular structure by a theoretical pattern in polystyrene. Iran Polym J 22, 417–428 (2013). https://doi.org/10.1007/s13726-013-0140-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13726-013-0140-8