Effect of MCM-41 nanoparticles on the kinetics of free radical and RAFT polymerization of styrene


To examine the effect of mobil composition of matter 41 (MCM-41) nanoparticles on the kinetics of free radical and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT)-mediated reversible addition fragmentation chain transfer (RAFT) polymerization, the polymerization reaction using various amounts of as-synthesized MCM-41 were performed. To study the reaction kinetics, conversion, molecular weight and polydispersity index (PDI) were obtained during the polymerization. Also, differential scanning calorimetry (DSC) was used to determine the glass transition temperature (T g) values of samples. According to the results, in free radical polymerization, conversion was increased by adding nanoparticles but the reverse trend was observed in RAFT polymerization. The same results were obtained for molecular weight values. In free radical polymerization, increasing the MCM-41 content led to higher PDI value, while in RAFT polymerization it did not appreciably affect the PDI value. In RAFT polymerization, no induction time was observed which indicates that DDMAT is an appropriate RAFT agent for styrene polymerization. Also in free radical polymerization, the addition of MCM-41 particles reduced T g values in comparison to neat PS. On the other hand, there was an increase in T g value up to 5 wt% of MCM-41 loading and a drastic reduction was observed in 7 wt% MCM-41 loading in the RAFT polymerization. Finally, the T g values of nanocomposites produced by RAFT method were higher than those in the nanocomposites synthesized using the free radical method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2010) Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym Compos 31:1829–1837

    Article  CAS  Google Scholar 

  2. 2.

    Motahari S, Dornajafi L, Fotovat-Ahmadi I (2012) Migration of organic compounds from PET/clay nanocomposites: influences of clay type, content and dispersion state. Iran Polym J 21:669–681

    Article  CAS  Google Scholar 

  3. 3.

    Hajibaba A, Naderi G, Ghoreishy M, Bakhshandeh G, Razavi Nouri M (2012) Effect of single-walled carbon nanotubes on morphology and mechanical properties of NBR/PVC blends. Iran Polym J 21:505–511

    Article  CAS  Google Scholar 

  4. 4.

    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix-grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetic study. Int J Chem Kinet 44:555–569

    Article  CAS  Google Scholar 

  5. 5.

    Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqani H (2012) A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. J Polym Res 19: Article No. 9793

  6. 6.

    Ispas C, SokolovI Andreescu S (2009) Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393:543–554

    Article  CAS  Google Scholar 

  7. 7.

    Ma X-H, Xu Z-L, Wu F, Xu H-T (2012) PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes prepared by dip-coating method. Iran Polym J 21:31–41

    Article  CAS  Google Scholar 

  8. 8.

    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Nanoclay-encapsulated polystyrene microspheres by reverse atom transfer radical polymerization. Polym Compos 33:990–998

    Article  CAS  Google Scholar 

  9. 9.

    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Synthesis of well-defined clay encapsulated poly (styrene-co-butyl acrylate) nanocomposite latexes via reverse atom transfer radical polymerization in miniemulsion. J Polym Eng 32:111–119

    Google Scholar 

  10. 10.

    Jaymand M (2011) Surface modification of montmorillonite with novel modifier and preparation of polystyrene/montmorillonite nanocomposite by in situ radical polymerization. J Polym Res 18:957–963

    Article  CAS  Google Scholar 

  11. 11.

    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. Int J Chem Kinet 44:555–569

    Article  CAS  Google Scholar 

  12. 12.

    Duan J, Shao S, Li Y, Wang L, Jiang P, Liu B (2012) Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J 21:109–120

    Article  CAS  Google Scholar 

  13. 13.

    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Properties of PMMA/carbon nanotubes nanocomposites prepared by “grafting through” method. Polym Compos 33:215–224

    Article  CAS  Google Scholar 

  14. 14.

    Jafarkhani M, Fazlali A, Moztarzadeh F, Mozafari M (2012) Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iran Polym J 21:713–720

    Article  CAS  Google Scholar 

  15. 15.

    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  16. 16.

    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  17. 17.

    Choi JS, Kim DJ, Chang SH, Ahn WS (2003) Catalytic applications of MCM-41 with different pore sizes in selected liquid phase reactions. Appl Catal A-Gen 254:225–237

    Article  CAS  Google Scholar 

  18. 18.

    Selvaraj M, Pandurangan A, SeshadriK S, Sinaha PK, LalK B (2003) Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al. Appl Catal A-Gen 242:347–364

    Article  CAS  Google Scholar 

  19. 19.

    Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254–257

    Article  Google Scholar 

  20. 20.

    Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614

    Article  CAS  Google Scholar 

  21. 21.

    Jiamwijitkul S, Jongsomjit B, Praserthdam P (2007) Effect of Boron-modified MCM-41-supported dMMAO/zirconocene catalyst on copolymerization of ethylene/1-octene for LLDPE synthesis. Iran Polym J 16:549–559

    CAS  Google Scholar 

  22. 22.

    Nejabat GR, Nekoomanesh M, Arabi H, Emami M, Aghaei-Nieat M (2010) Preparation of polyethylene nano-fibres using rod-like MCM-41/TiCl4/MgCl2/THF bi-supported Ziegler-Natta catalytic system. Iran Polym J 19:79–87

    CAS  Google Scholar 

  23. 23.

    Hui S, Chattopadhyay S, Chaki TK (2010) Thermal and thermo-oxidative degradation study of a model LDPE/EVA based TPE system: effect of nano silica and electron beam irradiation. Polym Compos 31:1387–1397

    CAS  Google Scholar 

  24. 24.

    Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188

    Article  CAS  Google Scholar 

  25. 25.

    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. J Polym Eng 32:13–22

    Article  Google Scholar 

  26. 26.

    Salami-Kalajahi M, Haddadi-Asl V, Ganjeh-Anzabi P, Najafi M (2011) Dithioester-mediated RAFT polymerization: a kinetic study by mathematical modeling. Iran Polym J 20:459–478

    CAS  Google Scholar 

  27. 27.

    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H, Hemmati M (2012) Effect of carbon nanotubes on the kinetics of in situ polymerization of methyl methacrylate. Nano 07:Article No. 1250003

  28. 28.

    Grun M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials—control of porosity and morphology. Micropor Mesopor Mater 27:207–216

    Article  CAS  Google Scholar 

  29. 29.

    Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756

    Article  CAS  Google Scholar 

  30. 30.

    Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Roghani-Mamaqani H, Hemmati M (2011) Investigating the effect of pristine and modified silica nanoparticles on thekinetics of methyl methacrylate polymerization. Chem Eng J 174:368–375

    Article  CAS  Google Scholar 

  31. 31.

    Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaqani H (2012) Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J Polym Res 19: Article No. 9954

  32. 32.

    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2011) Synthesis and characterization of exfoliated poly(styrene-co-methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: an activators generated by electron transfer approach. Polym Compos 32:1979–1987

    Article  CAS  Google Scholar 

  33. 33.

    Perrier S, Barner-Kowollik C, Quinn JF, Vana P, Davis TP (2002) Origin of inhibition effects in the reversible addition fragmentation chain transfer (RAFT) polymerization of methyl acrylate. Macromolecules 35:8300–8306

    Article  CAS  Google Scholar 

  34. 34.

    Favier A, Charreyre MT, Pichot C (2004) A detailed kinetic study of the RAFT polymerization of a bi-substituted acrylamide derivative: influence of experimental parameters. Polymer 45:8661–8674

    Article  CAS  Google Scholar 

  35. 35.

    Arita T, Buback M, Vana P (2005) Cumyl dithiobenzoate mediated RAFT polymerization of styrene at high temperatures. Macromolecules 38:7935–7943

    Article  CAS  Google Scholar 

  36. 36.

    Blas H, Save M, Boissi E, Sanchez C, Charleux B (2011) Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules 44:2577–2588

    Article  CAS  Google Scholar 

  37. 37.

    Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE T Dielect El In 15:12–23

    Article  CAS  Google Scholar 

  38. 38.

    Ash BJ, Schadler LS, Siegel RW (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett 55:83–87

    Article  CAS  Google Scholar 

  39. 39.

    Tsagaropoulos G, Eisenberg A (1995) Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 28:60–67

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mehdi Parvini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarsabili, M., Parvini, M., Salami-Kalajahi, M. et al. Effect of MCM-41 nanoparticles on the kinetics of free radical and RAFT polymerization of styrene. Iran Polym J 22, 155–163 (2013). https://doi.org/10.1007/s13726-012-0114-2

Download citation


  • MCM-41
  • Nanocomposite
  • Kinetics
  • Reversible addition fragmentation chain transfer (RAFT) polymerization
  • Molecular weight distribution (MWD)
  • Differential scanning calorimetry (DSC)