Skip to main content
Log in

Multi-walled carbon nanotube-filled polypropylene nanocomposites: high velocity impact response and mechanical properties

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polymer nanocomposites containing 0.75, 1.0 and 1.5 wt% of multi-walled carbon nanotubes (MWNTs) in a polypropylene (PP) matrix were studied in relation to their low and high velocity impact performances. PP nanocomposites reinforced MWNTs were prepared via melt compounding in an internal mixer followed by injection molding. Transmission electron microscopy analysis confirmed well dispersed 1 wt% MWNT in the polymer nanocomposites. The same analysis showed agglomeration and cluster formation in 1.5 wt% MWNT specimens. Results showed increase in Izod impact strength in nanocomposites containing 1 wt% MWNT, which attained the highest value (with 33.4 % increment). A single stage gas gun was used to carry out high velocity impact test in velocity range of 20–150 m/s using hard steel hemispherical tip projectile of 11.34 g weight and 8.1 mm diameter. Results showed better ballistic limit velocity (the average of highest impact velocity causing perforation but unable to go through and lowest impact velocities with no residual velocity recording) and energy absorption for specimens, each containing 1 wt% MWNT, showing the highest value (with 100 % increment), compared with neat PP. Considerable increases were observed in tensile and flexural strengths and modulus for the MWNT-containing specimens as compared with neat PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hambir S, Bulakh N, Kodgire P, Kalgaonkar R, Jog JP (2001) PP/clay nanocomposites: a study of crystallization and dynamic mechanical behavior. J Polym Sci Polym Phys 39:446–450

    Article  CAS  Google Scholar 

  2. Li X, Huang Y, Li J (2006) Study on synthesis and dispersion characteristics of MWNTs/PBO composites prepared by in situ polymerization. Iran Polym J 15:317–322

    CAS  Google Scholar 

  3. Fereidoon A, Ghorbanzadeh Ahangari M, Saedodin S (2008) Thermal and structural behaviors of polypropylene nanocomposites reinforced with single-walled carbon nanotubes by melt processing method. J Macromol Sci Part B Phys 48:196–211

    Google Scholar 

  4. Shokrieh MM, Rafiee R (2012) Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites. Iran Polym J 21:397–402

    Article  Google Scholar 

  5. Ayatollahi MR, Shokrieh M, Shadlou Sh, Kefayati AR, Chitsazzadeh M (2011) Mechanical and electrical properties of epoxy/multi-walled carbon nanotube/nanoclay nanocomposites. Iran Polym J 20:835–843

    CAS  Google Scholar 

  6. Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) Morphological characterization of single-walled carbon nanotubes-PP composites. Compos Sci Technol 63:1149–1153

    Article  CAS  Google Scholar 

  7. Logakis E, Pollatos E, Pandis Ch, Peoglos V, Zuburtikudis I, Delides CG, Vatalis A, Gjoka M, Syskakis E, Viras K, Pissis P (2010) Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos Sci Technol 70:328–335

    Article  CAS  Google Scholar 

  8. Hajibaba A, Naderi Gh, Ghoreishy M, Bakhshandeh Gh, Nouri M (2012) Effect of single-walled carbon nanotubes on morphology and mechanical properties of NBR/PVC blends. Iran Polym J 21:505–511

    Article  Google Scholar 

  9. Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J Appl Polym Sci 98:1087–1091

    Article  CAS  Google Scholar 

  10. Balow MJ (2003) Handbook of polypropylene and polypropylene composites. CRC Press, New York 1

    Google Scholar 

  11. Garton A, Kim SW, Wiles DM (1982) Modification of the interface morphology in mica-reinforced polypropylene. J Polym Sci Polym Lett 20:273–278

    Article  CAS  Google Scholar 

  12. Kaynak A, Polat A, Yilmazer U (1996) Some microwave and mechanical properties of carbon fiber-polypropylene and carbon black-polypropylene composites. Mater Res Bull 31:1195–1206

    Article  CAS  Google Scholar 

  13. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    Article  CAS  Google Scholar 

  14. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300

    Article  CAS  Google Scholar 

  15. Cornwell F, Wille LT (1997) Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun 101:555–558

    Article  CAS  Google Scholar 

  16. Fereidoon A, Ghorbanzadeh Ahangari M, Saedodin S (2009) A DSC study on the nonisothermal crystallization kinetics of polypropylene/single-walled carbon nanotube nanocomposite. Polym Plast Technol Eng 48:579–586

    Article  CAS  Google Scholar 

  17. Bao SP, Tjong SC (2007) Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: the effects of loading rate and temperature. Mater Sci Eng A 485:508–516

    Google Scholar 

  18. Yu F, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555

    Article  CAS  Google Scholar 

  19. Hemmati M, Rahimi GH, Kaganj AB, Sepehri S, Rashidi AM (2008) Rheological and mechanical characterization of multi-walled carbon nanotubes/polypropylene nanocomposites. J Macromol Sci B Phys 47:1176–1187

    Article  CAS  Google Scholar 

  20. Wagner D, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–190

    Article  CAS  Google Scholar 

  21. Lourie O, Cox DM, Wagner HD (1998) Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett 81:1638–1641

    Article  CAS  Google Scholar 

  22. Zhang H, Zhang Zh (2007) Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. Eur Polym J 43:3197–3207

    Article  CAS  Google Scholar 

  23. Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283:62–69

    Article  CAS  Google Scholar 

  24. Duan J, Shao Sh, Li Y, Wang L, Jiang P, Liu B (2012) Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J 21:109–120

    Article  Google Scholar 

  25. Jin L, Bower C, Zhou O (1998) Carbon nanotube/polymer composites: fabrication, nanotube alignment and deformation. Appl Phys Lett 73:1197–1199

    Article  CAS  Google Scholar 

  26. Curran S, Davey AP, Coleman J, Dalton A, McCarthy B, Maier S (1999) Evolution and evaluation of the polymer/nanotube composite. Synth Met 103:2559–2562

    Article  CAS  Google Scholar 

  27. Funck A, Kaminsky W (2007) Polypropylene carbon nanotube composites by in situ polymerization. Compos Sci Technol 67:906–915

    Article  CAS  Google Scholar 

  28. Xiao KQ, Zhang LC, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube reinforced polyethylene composites. Compos Sci Technol 67:162–177

    Article  Google Scholar 

  29. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2008) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763

    Article  Google Scholar 

  30. Xiao Y, Xi Zhang, Cao W, Wang K, Tan H, Zhang Q, Du R, Fu Q (2007) Dispersion and mechanical properties of polypropylene/multiwall carbon nanotubes composites obtained via dynamic packing injection molding. J Appl Polym Sci 104:1880–1886

    Article  CAS  Google Scholar 

  31. Lingyu S, Ronald FG, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69:2392–2409

    Article  Google Scholar 

  32. David NV, Gao XL (2009) Ballistic resistant body armor: contemporary and prospective materials and related protection. Appl Mech Rev 62:050802

    Article  Google Scholar 

  33. Hosur MV, Mohammed AA, Zainuddin S, Jeelani S (2008) Impact performance of nanophased foam core sandwich composites. Mater Sci Eng A Struct 498:100–109

    Article  Google Scholar 

  34. Sabet AR, Beheshty MH, Rahimi H (2009) Experimental study of sharp-tipped projectile perforation of GFRP plates containing sand filler under high velocity impact and quasi-static loadings. Polym Compos 30:1497–1509

    Article  CAS  Google Scholar 

  35. Chhabildas LC, Davison L, Horie Y (2005) High pressure shock compression of solids VIII. Springer, Germany Chs. 1, 2

    Book  Google Scholar 

  36. Goldsmith W, Dharan CKH, Chang H (1995) Quasi-static and ballistic perforation of carbon fiber laminates. Int J Solid Struct 32:89–103

    Article  Google Scholar 

  37. MIL-STD-662F (1997) V50 Ballistic test for Armor, MIL-STD-662F Standard, Department of defense test method standard

  38. ASTM D256-02 (2002) Standard rest methods for determining the Izod pendulum impact resistance of plastics

  39. ISO 527–2 (1993) Determination of tensile properties. Part 2: Test conditions for moulding and extrusion plastics

  40. ASTM D790-03 (2003) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulation materials

Download references

Acknowledgments

The authors wish to thank Dr. M Karabi, academic member of Processing Faculty of Iran Polymer and Petrochemical Institute (IPPI) for his kind assistance in feasibility of this work and special thanks to Mr. HM Hosseini, Department of Plastic Processing, Iran Polymer and Petrochemical Institute (IPPI) for his assistance in preparing samples for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh M. Zamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, M.M., Fereidoon, A. & Sabet, A. Multi-walled carbon nanotube-filled polypropylene nanocomposites: high velocity impact response and mechanical properties. Iran Polym J 21, 887–894 (2012). https://doi.org/10.1007/s13726-012-0097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0097-z

Keywords

Navigation