Adamic LA, Adar E (2003) Friends and neighbors on the Web. Soc Networks 25:211–230. https://doi.org/10.1016/S0378-8733(03)00009-1
Article
Google Scholar
Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826. https://doi.org/10.1016/S0092-8674(01)00616-X
Article
Google Scholar
Chen X, Yan G-Y (2015) Semi-supervised learning for potential human microRNA-disease associations inference. Sci Rep 4:5501. https://doi.org/10.1038/srep05501
Article
Google Scholar
Chen X, Liu MX, Yan GY (2012) RWRMDA: predicting novel human microRNA-disease associations. Mol Biosyst 8:2792–2798. https://doi.org/10.1039/c2mb25180a
Article
Google Scholar
Chen X, Yan CC, Zhang X et al (2016) WBSMDA: within and between Score for MiRNA-disease association prediction. Sci Rep 6:21106. https://doi.org/10.1038/srep21106
Article
Google Scholar
Chen X, Guan N-N, Li J-Q, Yan G-Y (2018a) GIMDA: graphlet interaction-based MiRNA-disease association prediction. J Cell Mol Med 22:1548–1561. https://doi.org/10.1111/jcmm.13429
Article
Google Scholar
Chen X, Yang J-R, Guan N-N, Li J-Q (2018b) GRMDA: graph regression for MiRNA-disease association prediction. Front Physiol 9:92. https://doi.org/10.3389/fphys.2018.00092
Article
Google Scholar
Chen X, Wang L, Qu J et al (2018c) Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics 34:4256–4265. https://doi.org/10.1093/bioinformatics/bty503
Article
Google Scholar
Chen X, Xie D, Zhao Q, You ZH (2019) MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform 20:515–539. https://doi.org/10.1093/bib/bbx130
Article
Google Scholar
Chen X, Sun L-G, Zhao Y (2020) NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 00:1–12. https://doi.org/10.1093/bib/bbz159
Article
Google Scholar
Chou C-H, Shrestha S, Yang C-D et al (2018a) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302. https://doi.org/10.1093/nar/gkx1067
Article
Google Scholar
Chou C-H, Shrestha S, Yang C-D, Chang N-W (2018b) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302. https://doi.org/10.1093/nar/gkx1067
Article
Google Scholar
Cui R, Meng W, Sun HL et al (2015) MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1502068112
Article
Google Scholar
Dahlhaus M, Roolf C, Ruck S et al (2013) Expression and prognostic significance of hsa-miR-142-3p in acute leukemias. Neoplasma 60:432–438. https://doi.org/10.4149/neo_2013_056
Article
Google Scholar
Dalmay T, Edwards DR (2006) MicroRNAs and the hallmarks of cancer. Oncogene 25:6170–6175. https://doi.org/10.1038/sj.onc.1209911
Article
Google Scholar
Gaur P, Chaturvedi A (2019) Clustering and candidate motif detection in exosomal miRNAs by application of machine learning algorithms. Interdiscip Sci Comput Life Sci 11:206–214. https://doi.org/10.1007/s12539-017-0253-4
Article
Google Scholar
Goto Y, Kurozumi A, Enokida H et al (2015) Functional significance of aberrantly expressed microRNAs in prostate cancer. Int J Urol 22:242–252. https://doi.org/10.1111/iju.12700
Article
Google Scholar
Huang Z, Shi J, Gao Y et al (2019) HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res 47:D1013–D1017. https://doi.org/10.1093/nar/gky1010
Article
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141
Article
Google Scholar
Leggio L, Vivarelli S, L’Episcopo F et al (2017) MicroRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci. https://doi.org/10.3390/ijms18122698
Article
Google Scholar
Li G, Luo J, Xiao Q et al (2017) Predicting MicroRNA-disease associations using network topological similarity based on DeepWalk. IEEE Access 5:24032–24039. https://doi.org/10.1109/ACCESS.2017.2766758
Article
Google Scholar
Li G, Luo J, Xiao Q et al (2018) Prediction of microRNA–disease associations with a Kronecker kernel matrix dimension reduction model. RSC Adv 8:4377–4385. https://doi.org/10.1039/C7RA12491K
Article
Google Scholar
Liang C, Yu S, Wong KC, Luo J (2018) A novel semi-supervised model for miRNA-disease association prediction based on l1-norm graph. J Transl Med 16:1–12. https://doi.org/10.1186/s12967-018-1741-y
Article
Google Scholar
Long H, Wang X, Chen Y et al (2018) Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 428:90–103. https://doi.org/10.1016/J.CANLET.2018.04.016
Article
Google Scholar
Lu M, Zhang Q, Deng M et al (2008) An analysis of human MicroRNA and disease associations. PLoS ONE 3:e3420. https://doi.org/10.1371/journal.pone.0003420
Article
Google Scholar
Peng W, Lan W, Zhong J et al (2017) A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks. Methods 124:69–77. https://doi.org/10.1016/J.YMETH.2017.05.024
Article
Google Scholar
Peng L-H, Sun C-N, Guan N-N et al (2018) HNMDA: heterogeneous network-based miRNA–disease association prediction. Mol Genet Genomics. https://doi.org/10.1007/s00438-018-1438-1
Article
Google Scholar
Pichiorri F, Suh SS, Ladetto M et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105:12885–12890. https://doi.org/10.1073/pnas.0806202105
Article
Google Scholar
Pichler M, Ress AL, Winter E et al (2014) MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br J Cancer 110:1614–1621. https://doi.org/10.1038/bjc.2014.51
Article
Google Scholar
Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. https://doi.org/10.1038/35002607
Article
Google Scholar
Ruan K, Fang X, Ouyang G (2009) MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 285:116–126. https://doi.org/10.1016/j.canlet.2009.04.031
Article
Google Scholar
Ruepp A, Kowarsch A, Schmidl D et al (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11:1–11. https://doi.org/10.1186/gb-2010-11-1-r6
Article
Google Scholar
Valverde-Albacete FJ, Peláez-Moreno C (2014) 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox. PLoS ONE 9:e84217. https://doi.org/10.1371/journal.pone.0084217
Article
Google Scholar
Vila-Navarro E, Vila-Casadesús M, Moreira L et al (2017) MicroRNAs for detection of pancreatic neoplasia. Ann Surg 265:1226–1234. https://doi.org/10.1097/SLA.0000000000001809
Article
Google Scholar
Wang D, Wang J, Lu M et al (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics. https://doi.org/10.1093/bioinformatics/btq241
Article
Google Scholar
Xu J, Li CX, Lv JY et al (2011) Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-11-0055
Article
Google Scholar
Xuan P, Han K, Guo M et al (2013) Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS ONE 8:e70204. https://doi.org/10.1371/journal.pone.0070204
Article
Google Scholar
Yang Z, Wu L, Wang A et al (2017) dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 45:D812–D818. https://doi.org/10.1093/nar/gkw1079
Article
Google Scholar
Zhang L, Yu G, Guo M, Wang J (2018a) Predicting protein-protein interactions using high-quality non-interacting pairs. BMC Bioinformatics 19:525. https://doi.org/10.1186/s12859-018-2525-3
Article
Google Scholar
Zhang X, Yin J, Zhang X (2018b) A semi-supervised learning algorithm for predicting four types MiRNA-disease associations by mutual information in a heterogeneous network. Genes (Basel) 9:139. https://doi.org/10.3390/genes9030139
Article
Google Scholar
Zhou X, Li X, Wu M (2018) miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 3:14. https://doi.org/10.1038/s41392-018-0006-9
Article
Google Scholar
Zou Q, Li J, Hong Q et al (2015) Prediction of MicroRNA-disease associations based on social network analysis methods. Biomed Res Int 2015:810514. https://doi.org/10.1155/2015/810514
Article
Google Scholar