Antheunis ML, Tates K, Nieboer TE (2013) Patients’ and health professionals’ use of social media in health care: motives, barriers and expectations. Patient Educ Couns 92(3):426–431. doi:10.1016/j.pec.2013.06.020
Article
Google Scholar
Balka E, Bjorn P, Wagner I (2008) Steps toward a typology for health informatics. In: Proceedings of the ACM 2008 conference on Computer supported cooperative work (CSCW’08). ACM Press, New York, p 515–524. doi:10.1145/1460563.1460645
Burke M, Kraut R, Williams D (2010) Social use of computer- mediated communication by adults on the autism spectrum. In: Proceedings of the 2010 ACM conference on computer supported cooperative work (CSCW’10). ACM Press, New York, p 425–434. doi:10.1145/1718918.1718991
Caspersen S, Elkjaer M, Riis L, Pedersen N, Mortensen C, Jess T, Sarto P, Hansen TS, Wewer V, Bendtsen F, Moesgaard F (2008) Infliximab for inflammatory bowel disease in Denmark 1999–2005: clinical outcome and follow-up evaluation of malignancy and mortality. Clin Gastroenterol Hepatol 6(11):1212–1217. doi:10.1016/j.cgh.2008.05.010
Article
Google Scholar
Chancellor S, Mitra T, De Choudhury M (2016) Recovery amid pro-anorexia: analysis of recovery in social media. In: Proceedings of the 2016 CHI conference on human factors in computing systems (CHI ‘16). ACM Press, New York, p 2111–2123. doi:10.1145/2858036.2858246
Cline RJW (2001) Consumer health information seeking on the internet: the state of the art. Health Educ Res 16(6):671–692
Article
Google Scholar
Cohen J (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol Bull 70(4):213
Article
Google Scholar
Colombel JF, Loftus EV, Tremaine WJ, Egan LJ, Harmsen WS, Schleck CD, Zinsmeister AR, Sandborn WJ (2004) The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology 126(1):19–31. doi:10.1053/j.gastro.2003.10.047
Article
Google Scholar
Greaves F, Pape UJ, King D, Darzi A, Majeed A, Wachter RM, Millett C (2012) Associations between Web-based patient ratings and objective measures of hospital quality. Arch Intern Med 172(5):435–436. doi:10.1001/archinternmed.2011.1675
Article
Google Scholar
Greaves F, Ramirez-Cano D, Millett C, Darzi A, Donaldson L (2013) Harnessing the cloud of patient experience: using social media to detect poor quality healthcare. BMJ Qual Saf 22(3):251–255. doi:10.1136/bmjqs-2012-001527
Article
Google Scholar
Greene JA, Choudhry NK, Kilabuk E, Shrank WH (2011) Online social networking by patients with diabetes: a qualitative evaluation of communication with Facebook. J Gen Intern Med 26(3):287–292. doi:10.1007/s11606-010-1526-3
Article
Google Scholar
Huh J, Liu LS, Neogi T, Inkpen K, Pratt W (2014) Health vlogs as social support for chronic illness management. ACM Trans Comput Hum Interact 21(4):23. doi:10.1145/2630067
Article
Google Scholar
Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):55
Google Scholar
Liu Y, Chen Y, Lusch RF, Chen H, Zimbra D, Zeng S (2010) User-generated content on social media: predicting market success with online word-of-mouth. IEEE Intell Syst 25(6):8–12
Article
Google Scholar
Mankoff J, Kuksenok K, Kiesler S, Rode JA, Waldman K (2011) Competing online viewpoints and models of chronic illness. In: Proceedings of the 2011 annual conference on human factors in computing systems (CHI ‘11). ACM Press, New York, p 589–598. doi:10.1145/1978942.1979027
Ohno-Machado L (2012) Informatics 20 implications of social media, mobile health, and patient-reported outcomes for health-care and individual privacy. J Am Med Inform Assoc 19(5):683. doi:10.1136/amiajnl-2012-001224
Article
Google Scholar
Roccetti M, Casari A, Marfia F (2015) Inside chronic autoimmune disease communities: a social networks perspective to Crohn’s patient behavior and medical information. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM ‘15). ACM Press, New York, p 1089–1096. doi:10.1145/2808797.2808813
Roccetti M, Prandi C, Salomoni P, Marfia G (2016a) Unleashing the true potential of social networks: confirming infliximab medical trials through Facebook posts. Netw Model Anal Health Inform Bioinform 5:15. doi:10.1007/s13721-016-0122-9
Article
Google Scholar
Roccetti M, Salomoni P, Prandi C, Marfia G, Montagnani M, Gningaye L (2016b) Understanding Crohn’s disease patients reaction to infliximab from Facebook: A medical perspective. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM ‘16). ACM Press, New York, p 1007–1010. doi:10.1109/ASONAM.2016.7752364
Schumaker RP, Zhang Y, Huang CN, Chen H (2012) Evaluating sentiment in financial news articles. Decis Support Syst 53(3):458–464
Article
Google Scholar
Van De Belt TH, Engelen LJ, Berben SA, Schoonhoven L (2010) Definition of Health 2.0 and Medicine 2.0: a systematic review. J Med Internet Res 12(2):e18. doi:10.2196/jmir.1350
Article
Google Scholar
Van der Eijk M, Faber M (2013) Using online health communities to deliver patient-centered care to people with chronic conditions. J Med Internet Res 15(6):e115. doi:10.2196/jmir.2476
Article
Google Scholar
Vania C, Ibrahim M, Adriani M (2014) Sentiment lexicon generation for an under-resourced language. Int J Comput Linguist Appl 5(1):59
Google Scholar
Weitzman ER, Cole E, Kaci L, Mandl KD (2011) Social but safe? Quality and safety of diabetes-related online social networks. J Am Med Inform Assoc 18(3):292–297. doi:10.1136/jamia.2010.009712
Article
Google Scholar
Wilson T, Hoffmann P, Somasundaran S, Kessler J, Wiebe J, Choi Y, Cardie C, Riloff E, Patwardhan S (2005) OpinionFinder: a system for subjectivity analysis. In: Proceedings of hlt/emnlp on interactive demonstrations (pp. 34-35). Association for computational linguistics. doi:10.3115/1225733.1225751
Wright S (1921) Correlation and causation. J Agric Res 20(7):557–585
Google Scholar
Zhang Y, Dang Y, Chen H (2013) Research note: examining gender emotional differences in Web forum communication. Decis Support Syst 55(3):851–860. doi:10.1016/j.dss.2013.04.003
Article
Google Scholar