Skip to main content

Potential of Bioinformatics as functional genomics tool: an overview

Abstract

Bioinformatics has become intrinsic to modern genomics research. All genomics studies, viz., structural, functional and comparative genomics research, integrate bioinformatics with experimental components. Current bioinformatics facilities and computational capabilities will enable the generation of hypotheses and stimulate the annotation and functional discoveries for new gene and genomes. The resulting experimental data from high-throughput techniques will, in turn, be further stored in databases and can be analyzed by the help of bioinformatics tools to generate more refined functional hypothesis and models that will improve the overall understanding and increase opportunities for functional genomics applications. The goal of this review is to introduce some of the important resources of bioinformatics that must be considered when planning and executing functional genomic research.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: The Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  Google Scholar 

  • Bach R, Iwasaki Y, Friedland P (1984) Intelligent computational assistance for experiment design. Nucleic Acids Res 12:11–29

    Article  Google Scholar 

  • Bailey LC Jr, Searls DB, Overton GC (1998) Analysis of EST-driven gene annotation in human genomic sequence. Genome Res 8:362–376

    Article  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res 39:D1005–D1010

    Article  Google Scholar 

  • Blake JA, Richardson JE, Bult CJ, Kadin JA, Eppig JT, Mouse Genome Database Group (2003) MGD: the Mouse Genome Database. Nucleic Acids Res 31(1):193–195

    Article  Google Scholar 

  • Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST–database for “expressed sequence tags”. Nat Genet 4:332–333

    Article  Google Scholar 

  • Boutselakis H, Dimitropoulos D, Fillon J, Golovin A, Henrick K, Hussain A, Ionides J, John M, Keller PA, Krissinel E, McNeil P, Naim A, Newman R, Oldfield T, Pineda J, Rachedi A, Copeland J, Sitnov A, Sobhany S, Suarez-Uruena A, Swaminathan J, Tagari M, Tate J, Tromm S, Velankar S, Vranken W (2003) E-MSD: the European Bioinformatics Institute Macromolecular Structure Database. Nucleic Acids Res 31:458–462

    Article  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  Google Scholar 

  • Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469

    Article  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  Google Scholar 

  • Defoin-Platel M, Hindle MM, Lysenko A, Powers SJ, Habash DZ, Rawlings CJ, Saqi M (2011) AIGO: towards a unified framework for the analysis and the inter-comparison of GO functional annotations. BMC Bioinforma 12:431

    Article  Google Scholar 

  • D’Elia D, Gisel A, Eriksson NE, Kossida S, Mattila K, Klucar L, Bongcam-Rudloff E (2009) The 20th anniversary of EMBnet: 20 years of bioinformatics for the Life Sciences community. BMC Bioinforma 10:S1

    Article  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, Fitzhugh W, Fields C, Gocyne JD, Scott J, Shirley Rt, Liu L, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  Google Scholar 

  • Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sheppard D, Sobral D, Taylor K, Thormann A, Trevanion S, White S, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Harrow J, Herrero J, Hubbard TJ, Johnson N, Kinsella R, Parker A, Spudich G, Yates A, Zadissa A, Searle SM (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55

    Article  Google Scholar 

  • Hieter P, Boguski M (1997) Functional genomics: it’s all how you read it. Science 278:601–602

    Article  Google Scholar 

  • Hill DP, Smith B, McAndrews-Hill MS, Blake JA (2008) Gene Ontology annotations: what they mean and where they come from. BMC Bioinforma 9:S2

    Article  Google Scholar 

  • Hocquette JF (2005) Where are we in genomics? J Physiol Pharmacol 56:37–70

    Google Scholar 

  • Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002) The Ensembl genome database project. Nucleic Acids Res 30:38–41

    Article  Google Scholar 

  • International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  Google Scholar 

  • Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24(24):2938–2939

    Article  Google Scholar 

  • Katara P (2013) Role of bioinformatics and pharmacogenomics in drug discovery and development process. Netw Model Anal Health Inform Bioinforma 2:225–230

    Article  Google Scholar 

  • Katara P, Sharma N, Sharma S, Khatri I, Kaushik A, Kaushal L, Sharma V (2010) Comparative microarray data analysis for the expression of genes in the pathway of glioma. Bioinformation 5(1):31–34

    Article  Google Scholar 

  • Katara P, Grover A, Kuntal H, Sharma V (2011) In silico prediction of drug targets in Vibrio cholerae. Protoplasma 248(4):799–804

    Article  Google Scholar 

  • Katara P, Grover A, Sharma V (2012) In silico prediction of drug targets in phytopathogenic Pseudomonas syringae pv. phaseolicola: charting a course for agrigenomics translation research. OMICS 16(12):700–706

    Article  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  Google Scholar 

  • Koch I, Fuellen G (2008) A review of bioinformatics education in Germany. Brief Bioinform 9:232–242

    Article  Google Scholar 

  • Lander ES, Linton LM, Birren BN, International Human Genome Sequencing Consortium et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Landsman D, Gentleman R, Kelso J, Francis Ouellette BF (2009) DATABASE: A new forum for biological databases and curation. Database 2009:bap002

  • Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinform 6:S16

    Article  Google Scholar 

  • Ledford H (2010) Big science: the cancer genome challenge. Nature 464:972–974

    Article  Google Scholar 

  • Letovsky SI, Cottingham RW, Porter CJ, Li PW (1998) GDB: the Human Genome Database. Nucleic Acids Res 26(1):94–99

    Article  Google Scholar 

  • Lu Z (2011) PubMed and beyond: a survey of web tools for searching biomedical literature. Database 18:2011:baq036

    Google Scholar 

  • Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 31:34

    Article  Google Scholar 

  • Nagaraj SH, Gasser RB, Ranganathan S (2007) A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 8:6–21

    Article  Google Scholar 

  • Nakamura Y, Cochrane G, Karsch-Mizrachi I, International Nucleotide Sequence Database Collaboration (2013) The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res 41:D21–D24

    Article  Google Scholar 

  • Nelson DR (2013) A world of cytochrome P450s. Philos Trans R Soc Lond B Biol Sci 368:20120430

    Article  Google Scholar 

  • Pan X, Stein L, Brendel V (2005) SynBrowse: a synteny browser for comparative sequence analysis. Bioinformatics 21:3461–3468

    Article  Google Scholar 

  • Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R, Rayner T, Sharma A, William E, Sarkans U, Brazma A (2007) ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35:D747–D750

    Article  Google Scholar 

  • Ramsey GM, Howard EA (2003) Databases in the biological sciences. A user’s guide to the current copyright landscape. Plant Physiol 132(3):1131–1134

    Article  Google Scholar 

  • Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  Google Scholar 

  • Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ, Cline MS, Karolchik D, Barber GP, Clawson H, Diekhans M, Fujita PA, Goldman M, Gravell RC, Harte RA, Hinrichs AS, Kirkup VM, Kuhn RM, Learned K, Maddren M, Meyer LR, Pohl A, Rhead B, Wong MC, Zweig AS, Haussler D, Kent WJ (2012) ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res 40:D912–D917

    Article  Google Scholar 

  • Sealfon RS, Hibbs MA, Huttenhower C, Myers CL, Troyanskaya OG (2006) GOLEM: an interactive graph-based gene-ontology navigation and analysis tool. BMC Bioinforma 10:443

    Article  Google Scholar 

  • Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT, Brown PO, Botstein D, Cherry JM (2001) The Stanford Microarray Database. Nucleic Acids Res 29:152–155

    Article  Google Scholar 

  • Sousounis K, Tsonis PA (2012) Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 6:14

    Article  Google Scholar 

  • Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39:W86–W91

    Article  Google Scholar 

  • Torri F, Dinov ID, Zamanyan A, Hobel S, Genco A, Petrosyan P, Clark AP, Liu Z, Eggert P, Pierce J, Knowles JA, Ames J, Kesselman C, Toga AW, Potkin SG, Vawter MP, Macciardi F (2012) Next generation sequence analysis and computational genomics using graphical pipeline workflows. Genes (Basel) 3:545–575

    Article  Google Scholar 

  • Tu CT, Chen BS (2013) New measurement methods of network robustness and response ability via microarray data. PLoS ONE 8:e55230

    Article  Google Scholar 

  • Vernikos GS, Gkogkas CG, Promponas VJ, Hamodrakas SJ (2003) GeneViTo: visualizing gene-product functional and structural features in genomic datasets. BMC Bioinforma 31:53

    Article  Google Scholar 

  • Yang JY, Yang MQ, Zhu MM, Arabnia HR, Deng Y (2008) Promoting synergistic research and education in genomics and bioinformatics. BMC Genom 9(Suppl 1):I1

    Article  Google Scholar 

  • Yang MQ, Athey BD, Arabnia HR, Sung AH, Liu Q, Yang JY, Mao J, Deng Y (2009) High-throughput next-generation sequencing technologies foster new cutting-edge computing techniques in bioinformatics. BMC Genom 10(Suppl 1):I1

    Article  Google Scholar 

  • Yang JY, Niemierko A, Bajcsy R, Xu D, Athey BD, Zhang A, Ersoy OK, Li GZ, Borodovsky M, Zhang JC, Arabnia HR, Deng Y, Dunker AK, Liu Y, Ghafoor A (2010) 2K09 and thereafter: the coming era of integrative bioinformatics, systems biology and intelligent computing for functional genomics and personalized medicine research. BMC Genom 11(Suppl 3):I1

    Article  Google Scholar 

  • Zafar N, Mazumder R, Seto D (2003) CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinforma 24:12

    Google Scholar 

  • Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38:95–109

    Article  Google Scholar 

Download references

Acknowledgments

Author gratefully acknowledges the Center of Bioinformatics, Institute of Interdisciplinary sciences, University of Allahabad.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Katara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katara, P. Potential of Bioinformatics as functional genomics tool: an overview. Netw Model Anal Health Inform Bioinforma 3, 52 (2014). https://doi.org/10.1007/s13721-014-0052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-014-0052-3

Keywords

  • Annotation
  • Bioinformatics
  • Browser
  • Database
  • Ontology and Software