Skip to main content

Advertisement

Log in

Lack of response to EGFR tyrosine kinase inhibitors in an amylase-producing lung cancer with a preexisting MET amplification

  • Case report
  • Published:
International Cancer Conference Journal Aims and scope Submit manuscript

Abstract

A 76-year-old man was diagnosed as having lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR)-activating mutation based on a transbronchial biopsy specimen. Although laboratory data showed a marked elevation of saliva-type amylase activity in both the serum and urine, the salivary glands and pancreas were not clinically involved in hyperamylasemia. The patient was treated with EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, the EGFR-TKIs were ineffective, and the patient’s amylase levels increased in parallel with disease progression. He eventually died of respiratory failure. On autopsy, the histological findings showed an invasive adenocarcinoma with micropapillary growth and an immunohistochemical study revealed the localization of the amylase in the cytoplasm of tumor cells. Using fluorescence in situ hybridization analyses of both transbronchial lung biopsy specimens obtained prior to treatment and the autopsied lung tumor, we confirmed the amplification of the MET gene prior to drug exposure. The result suggested that the lung cancer might have overcome the inhibition of EGFR-TKIs via MET amplification. This case report also indicated that the amylase levels of amylase-producing lung cancer vary with disease progression, and hyperamylasemia refractory to EGFR-TKIs may be a predictor of drug resistance to EGFR-TKIs. Therefore, if the amylase levels do not decrease sufficiently in response to EGFR-TKI treatment in patients with EGFR-mutated, amylase-producing lung cancer, the possibility that drug resistance to EGFR-TKIs may coexist with the EGFR mutation should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weiss MJ, Edmondson HA, Wertman M (1951) Elevated serum amylase associated with bronchogenic carcinoma. Am J Clin Pathol 21:1057–1061

    CAS  PubMed  Google Scholar 

  2. Ammann RW, Berk JE, Fridhandler L et al (1973) Hyperamylasemia with carcinoma of the lung. Ann Intern Med 78:521–525

    Article  CAS  PubMed  Google Scholar 

  3. Lenler-Petersen P, Grove A, Brock A et al (1994) Alpha-amylase in resectable lung cancer. Eur Respir J 7:941–945

    CAS  PubMed  Google Scholar 

  4. Ko HW, Tsai YH, Yu CT et al (2008) Good response to gefitinib for lung adenocarcinoma with hyperamylasemia: a case report. Chang Gung Med J 31:606–611

    PubMed  Google Scholar 

  5. Zhang J, Zhang L, Pan S et al (2013) Amylase: sensitive tumor marker for amylase-producing lung adenocarcinoma. J Thorac Dis 5:167–169

    CAS  Google Scholar 

  6. Tsuda H, Akiyama F, Terasaki H et al (2001) Detection of HER-2/neu (c-erb B-2) DNA amplification in primary breast carcinoma. Interobserver reproducibility and correlation with immunohistochemical HER-2 overexpression. Cancer 92:2965–2974

    Article  CAS  PubMed  Google Scholar 

  7. Cappuzzo F, Marchetti A, Skokan M et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27:1667–1674

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tsukawaki M, Izawa M, Yoshida M et al (1992) A case of amylase-producing lung cancer. Intern Med 31:60–63

    Article  CAS  PubMed  Google Scholar 

  9. Yamazaki S, Ebisawa S, Yasuo M et al (2007) Small-cell lung carcinoma produces salivary-type amylase: a case report with review. Intern Med 46:883–887

    Article  PubMed  Google Scholar 

  10. Tokumo M, Toyooka S, Kimura K et al (2005) The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res 11:1167–1173

    CAS  PubMed  Google Scholar 

  11. Inoue A, Suzuki T, Fukuhara T et al (2006) Prospective phase II study of gefitinib for chemotherapy-naïve patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 24:3340–3346

    Article  CAS  PubMed  Google Scholar 

  12. Mitsudomi T, Yatabe Y (2007) Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 98:1817–1824

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi S, Boggon TJ, Dayaram T et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  14. Kosaka T, Yatabe Y, Endoh H et al (2006) Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 12:5764–5769

    Article  CAS  PubMed  Google Scholar 

  15. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  CAS  PubMed  Google Scholar 

  16. Cappuzzo F, Marchetti A, Skokan M et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27:1667–1674

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yano S, Wang W, Li Q et al (2008) Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 68:9479–9487

    Article  CAS  PubMed  Google Scholar 

  18. Sordella R, Bell DW, Haber DA et al (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305:1163–1167

    Article  CAS  PubMed  Google Scholar 

  19. Tracy S, Mukohara T, Hansen M et al (2004) Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res 64:7241–7244

    Article  CAS  PubMed  Google Scholar 

  20. Nozu F, Owyang C, Tsunoda Y (2000) Involvement of phosphoinositide 3-kinase and its association with pp60src in cholecystokinin-stimulated pancreatic acinar cells. Eur J Cell Biol 79:803–809

    Article  CAS  PubMed  Google Scholar 

  21. Ikeda Y, Fukuoka SI (2003) Phosphatidic acid production, required for cholecystokinin octapeptide-stimulated amylase secretion from pancreatic acinar AR42 J cells, is regulated by a wortmannin-sensitive process. Biochem Biophys Res Commun 306:943–947

    Article  CAS  PubMed  Google Scholar 

  22. Yanagitani N, Kaira K, Sunaga N et al (2007) Serum amylase is a sensitive tumor marker for amylase-producing small cell lung cancer? Int J Clin Oncol 12:231–233

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nemoto.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemoto, K., Hayashihara, K., Oh-ishi, S. et al. Lack of response to EGFR tyrosine kinase inhibitors in an amylase-producing lung cancer with a preexisting MET amplification. Int Canc Conf J 4, 236–240 (2015). https://doi.org/10.1007/s13691-015-0208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13691-015-0208-8

Keywords

Navigation