Skip to main content

Advertisement

Log in

GLP-1 Receptor Agonists in Obese Patients with Inflammatory Bowel Disease: from Molecular Mechanisms to Clinical Considerations and Practical Recommendations for Safe and Effective Use

  • REVIEW
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss current literature and provide practical recommendations for the safe and effective use of glucagon-like peptide 1 receptor agonists (GLP-1 RA) in people with inflammatory bowel disease (IBD) and type 2 diabetes (T2D) and/or obesity. The molecular mechanisms that justify the potential benefits of GLP-1 RA in IBD and the links between IBD, obesity, and cardiovascular disease are also discussed.

Recent Findings

Preliminary data suggest that GLP-1 RA can modulate crucial pathways in the pathogenesis of IBD, such as chronic inflammation circuits, intestinal tight junctions, and gut microbiome dysbiosis, setting the stage for human trials to investigate the role of these agents in the treatment of IBD among people with or without diabetes and obesity. However, gastrointestinal side effects related to GLP-1 RA need appropriate clinical management to mitigate risks and maximize the benefits of therapy in people with IBD.

Summary

GLP-1 RA originally emerged as drugs for the treatment of hyperglycemia and are currently licensed for the management of T2D and/or overweight/obesity. However, their wealth of pleiotropic actions soon raised expectations that they might confer benefits on non-metabolic disorders. Future studies are expected to clarify whether GLP-1 RA deserve an adjunct place in the arsenal of drugs against IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

IBD:

Inflammatory bowel disease

GI:

Gastrointestinal

CD:

Crohn’s disease

UC:

Ulcerative colitis

T2D:

Type 2 diabetes

CVD:

Cardiovascular disease

GLP-1 RA:

Glucagon-like peptide 1 receptor agonists

CVOT:

Cardiovascular outcome trial

HF:

Heart failure

NAFLD:

Nonalcoholic fatty liver disease

HCC:

Hepatocellular carcinoma

EEC:

Enteroendocrine cell

GIP:

Glucose-dependent insulinotropic polypeptide

TNF:

Tumor necrosis factor

IL:

Interleukin

JAK:

Janus kinase

CCL:

C-C motif ligand

TGF:

Tumor growth factor

EGF:

Epidermal growth factor

KGF:

Keratinocyte growth factor

HGF:

Hepatocyte growth factor

cAMP:

Cyclic adenosine monophosphate

NF-kB:

Nuclear factor-kB

TCA:

T cell activation gene

SDF:

Stromal cell–derived factor

M-CSF:

Macrophage colony stimulating factor

CSMC:

Colon smooth muscle cell

SSM:

Stabilized phospholipid micelles

DDS:

Dextran sodium sulfate

DRA:

Downregulated in adenoma

BLG:

Ban-Lan-Gen

ACE:

Angiotensin-converting enzyme

GPBAR:

G protein–coupled bile acid receptor

iNKT:

Invariant natural killer T cells

DPP-4:

Dipeptidyl peptidase-4

GLP1/2-Fc:

GLP1/2-Fc fusion

SCID:

Severe combined immunodeficiency disease

Ex-4:

Exendin-4

IRR:

Incidence rate ratio

BMI:

Body mass index

APN:

Adiponectin

MAT:

Mesenteric adipose tissue

HFD:

High-fat diet

TLR:

Toll-like receptor

NASH:

Nonalcoholic steatohepatitis

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

CRP:

C-reactive protein

PPI:

Proton pump inhibitor

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Satsangi J, Silverberg MS, Vermeire S, Colombel JF. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55(6):749–53. https://doi.org/10.1136/gut.2005.082909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ponder A, Long MD. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin Epidemiol. 2013;5:237–47. https://doi.org/10.2147/CLEP.S33961.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Flynn S, Eisenstein S. Inflammatory bowel disease presentation and diagnosis. Surg Clin North Am. 2019;99(6):1051–62. https://doi.org/10.1016/j.suc.2019.08.001.

    Article  PubMed  Google Scholar 

  4. Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;7:113–20. https://doi.org/10.2147/JIR.S65979.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–78. https://doi.org/10.1016/S0140-6736(17)32448-0.

    Article  PubMed  Google Scholar 

  6. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54. https://doi.org/10.1053/j.gastro.2011.10.001.

    Article  PubMed  Google Scholar 

  7. Na SY, Moon W. Perspectives on current and novel treatments for inflammatory bowel disease. Gut Liver. 2019;13(6):604–16. https://doi.org/10.5009/gnl19019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Upadhyay J, Polyzos SA, Perakakis N, Thakkar B, Paschou SA, Katsiki N, et al. Pharmacotherapy of type 2 diabetes: an update. Metabolism. 2018;78:13–42. https://doi.org/10.1016/j.metabol.2017.08.010.

    Article  CAS  PubMed  Google Scholar 

  9. • Giugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 2021;20(1):189. https://doi.org/10.1186/s12933-021-01366-8. A meta-analysis showing that therapy with GLP-1 RA in people with T2DM lowers all cause mortality and protects against macrovascular and microvascular complications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Chen R, Jia Y, Chen M, Shuai Z. Effects of exenatide on coagulation and platelet aggregation in patients with type 2 diabetes. Drug Des Devel Ther. 2021;15:3027–40. https://doi.org/10.2147/DDDT.S312347.

    Article  PubMed  PubMed Central  Google Scholar 

  11. • Iorga RA, Bacalbasa N, Carsote M, Bratu OG, Stanescu AMA, Bungau S, et al. Metabolic and cardiovascular benefits of GLP-1 agonists, besides the hypoglycemic effect (Review). Exp Ther Med. 2020;20(3):2396–400. https://doi.org/10.3892/etm.2020.8714. Exenatide and liraglutide demonstrated the decrease of all-cause mortality, blood pressure values, weight reduction and improvement of dyslipidemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koufakis T, Liberopoulos EN, Kotsa K. A horse, a jockey, and a therapeutic dilemma: choosing the best option for a patient with diabetes and coronary artery disease. Am J Cardiovasc Drugs. 2022;22(4):357–61. https://doi.org/10.1007/s40256-022-00527-8.

    Article  PubMed  Google Scholar 

  13. •• Yazici D, Yapici Eser H, Kiyici S, Sancak S, Sezer H, Uygur M, et al. Clinical impact of Glucagon like peptide-1 receptor analogs on the complications of obesity. Obes Facts. 2022. https://doi.org/10.1159/000526808. The effects of GLP-1 RAs on obesity are not solely due to weight loss, but some pleiotropic effects like decreased inflammation, oxidative stress, and fibrosis also play a role in some of the complications.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bifari F, Manfrini R, Dei Cas M, Berra C, Siano M, Zuin M, et al. Multiple target tissue effects of GLP-1 analogues on non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Pharmacol Res. 2018;137:219–29. https://doi.org/10.1016/j.phrs.2018.09.025.

    Article  CAS  PubMed  Google Scholar 

  15. Eguchi Y, Kitajima Y, Hyogo H, Takahashi H, Kojima M, Ono M, et al. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol Res. 2015;45(3):269–78. https://doi.org/10.1111/hepr.12351.

    Article  CAS  PubMed  Google Scholar 

  16. Arvanitakis K, Koufakis T, Kotsa K, Germanidis G. How far beyond diabetes can the benefits of glucagon-like peptide-1 receptor agonists go? A review of the vidence on their effects on hepatocellular carcinoma. Cancers (Basel). 2022;14(19). https://doi.org/10.3390/cancers14194651.

  17. Schicho R, Marsche G, Storr M. Cardiovascular complications in inflammatory bowel disease. Curr Drug Targets. 2015;16(3):181–8. https://doi.org/10.2174/1389450116666150202161500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Artis D, Grencis RK. The intestinal epithelium: sensors to effectors in nematode infection. Mucosal Immunol. 2008;1(4):252–64. https://doi.org/10.1038/mi.2008.21.

    Article  CAS  PubMed  Google Scholar 

  19. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–53. https://doi.org/10.1038/nri3608.

    Article  CAS  PubMed  Google Scholar 

  20. Worthington JJ. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans. 2015;43(4):727–33. https://doi.org/10.1042/BST20150090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansen CF, Vrang N, Sangild PT, Jelsing J. Novel insight into the distribution of L-cells in the rat intestinal tract. Am J Transl Res. 2013;5(3):347–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paternoster S, Falasca M. Dissecting the physiology and pathophysiology of glucagon-like peptide-1. Front Endocrinol (Lausanne). 2018;9:584. https://doi.org/10.3389/fendo.2018.00584.

    Article  PubMed  Google Scholar 

  23. Kuhre RE, Albrechtsen NW, Windelov JA, Svendsen B, Hartmann B, Holst JJ. GLP-1 amidation efficiency along the length of the intestine in mice, rats and pigs and in GLP-1 secreting cell lines. Peptides. 2014;55:52–7. https://doi.org/10.1016/j.peptides.2014.01.020.

    Article  CAS  PubMed  Google Scholar 

  24. Buffa R, Capella C, Fontana P, Usellini L, Solcia E. Types of endocrine cells in the human colon and rectum. Cell Tissue Res. 1978;192(2):227–40. https://doi.org/10.1007/BF00220741.

    Article  CAS  PubMed  Google Scholar 

  25. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512. https://doi.org/10.1124/pr.108.000604.

    Article  CAS  PubMed  Google Scholar 

  26. Ivory CP, Wallace LE, McCafferty DM, Sigalet DL. Interleukin-10-independent anti-inflammatory actions of glucagon-like peptide 2. Am J Physiol Gastrointest Liver Physiol. 2008;295(6):G1202–10. https://doi.org/10.1152/ajpgi.90494.2008.

    Article  CAS  PubMed  Google Scholar 

  27. El-Jamal N, Erdual E, Neunlist M, Koriche D, Dubuquoy C, Maggiotto F, et al. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration. Am J Physiol Gastrointest Liver Physiol. 2014;307(3):G274–85. https://doi.org/10.1152/ajpgi.00389.2012.

    Article  CAS  PubMed  Google Scholar 

  28. Cai Z, Wang S, Li J. Treatment of inflammatory bowel disease: a comprehensive review. Front Med (Lausanne). 2021;8:765474. https://doi.org/10.3389/fmed.2021.765474.

  29. Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(5):269–78. https://doi.org/10.1038/nrgastro.2016.208.

    Article  CAS  PubMed  Google Scholar 

  30. Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1–106. https://doi.org/10.1136/gutjnl-2019-318484.

    Article  PubMed  Google Scholar 

  31. Bang-Berthelsen CH, Holm TL, Pyke C, Simonsen L, Sokilde R, Pociot F, et al. GLP-1 induces barrier protective expression in Brunner’s glands and regulates colonic inflammation. Inflamm Bowel Dis. 2016;22(9):2078–97. https://doi.org/10.1097/MIB.0000000000000847.

    Article  PubMed  Google Scholar 

  32. Yusta B, Baggio LL, Koehler J, Holland D, Cao X, Pinnell LJ, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015;64(7):2537–49. https://doi.org/10.2337/db14-1577.

    Article  CAS  PubMed  Google Scholar 

  33. Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR. Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol. 2008;132(3):329–38. https://doi.org/10.1085/jgp.200810044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lourie J. A novel use of liraglutide: induction of partial remission in ulcerative colitis and ankylosing spondylitis. Clin Med Rev Case Rep. 2019;6(8):281. https://doi.org/10.23937/2378-3656/1410281.

  35. •• Villumsen M, Schelde AB, Jimenez-Solem E, Jess T, Allin KH. GLP-1 based therapies and disease course of inflammatory bowel disease. EClinicalMedicine. 2021;37:100979. https://doi.org/10.1016/j.eclinm.2021.100979. A large registry-based study from Denmark showing that people with IBD treated with GLP-1 RA had a lower risk of IBD-related adverse clinical events compared with those receiving other antidiabetics.

  36. • Biagioli M, Marchiano S, Roselli R, Di Giorgio C, Bellini R, Bordoni M, et al. GLP-1 mediates regulation of colonic ACE2 expression by the bile acid receptor GPBAR1 in Inflammation. Cells. 2022;11(7). https://doi.org/10.3390/cells11071187. This study showed that ACE2 expression in the colon of IBD patients and rodent models of colitis was regulated in a GLP-1-dependent manner.

  37. Lynch L, Hogan AE, Duquette D, Lester C, Banks A, LeClair K, et al. iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab. 2016;24(3):510–9. https://doi.org/10.1016/j.cmet.2016.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al-Dwairi A, Alqudah TE, Al-Shboul O, Alqudah M, Mustafa AG, Alfaqih MA. Glucagon-like peptide-1 exerts anti-inflammatory effects on mouse colon smooth muscle cells through the cyclic adenosine monophosphate/nuclear factor-kappaB pathway in vitro. J Inflamm Res. 2018;11:95–109. https://doi.org/10.2147/JIR.S152835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhan JK, Tan P, Wang YJ, Wang Y, He JY, Tang ZY, et al. Exenatide can inhibit calcification of human VSMCs through the NF-kappaB/RANKL signaling pathway. Cardiovasc Diabetol. 2014;13:153. https://doi.org/10.1186/s12933-014-0153-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neurath MF, Becker C, Barbulescu K. Role of NF-kappaB in immune and inflammatory responses in the gut. Gut. 1998;43(6):856–60. https://doi.org/10.1136/gut.43.6.856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang B, Shen J. NF-kappaB inducing kinase regulates intestinal immunity and homeostasis. Front Immunol. 2022;13:895636. https://doi.org/10.3389/fimmu.2022.895636.

  42. Anbazhagan AN, Thaqi M, Priyamvada S, Jayawardena D, Kumar A, Gujral T, et al. GLP-1 nanomedicine alleviates gut inflammation. Nanomedicine. 2017;13(2):659–65. https://doi.org/10.1016/j.nano.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  43. Peng J, Li X, Zheng L, Duan L, Gao Z, Hu D, et al. Ban-Lan-Gen granule alleviates dextran sulfate sodium-induced chronic relapsing colitis in mice via regulating gut microbiota and restoring gut SCFA derived-GLP-1 production. J Inflamm Res. 2022;15:1457–70. https://doi.org/10.2147/JIR.S352863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yazbeck R, Sulda ML, Howarth GS, Bleich A, Raber K, von Horsten S, et al. Dipeptidyl peptidase expression during experimental colitis in mice. Inflamm Bowel Dis. 2010;16(8):1340–51. https://doi.org/10.1002/ibd.21241.

    Article  PubMed  Google Scholar 

  45. Schmidt PT, Hartmann B, Bregenholt S, Hoist JJ, Claesson MH. Deficiency of the intestinal growth factor, glucagon-like peptide 2, in the colon of SCID mice with inflammatory bowel disease induced by transplantation of CD4+ T cells. Scand J Gastroenterol. 2000;35(5):522–7. https://doi.org/10.1080/003655200750023796.

    Article  CAS  PubMed  Google Scholar 

  46. Lebrun LJ, Lenaerts K, Kiers D, Pais de Barros JP, Le Guern N, Plesnik J, et al. Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 2017;21(5):1160–8. https://doi.org/10.1016/j.celrep.2017.10.008.

  47. Nozu T, Miyagishi S, Kumei S, Nozu R, Takakusaki K, Okumura T. Glucagon-like peptide-1 analog, liraglutide, improves visceral sensation and gut permeability in rats. J Gastroenterol Hepatol. 2018;33(1):232–9. https://doi.org/10.1111/jgh.13808.

    Article  CAS  PubMed  Google Scholar 

  48. Simonsen L, Pilgaard S, Orskov C, Rosenkilde MM, Hartmann B, Holst JJ, et al. Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):G288–95. https://doi.org/10.1152/ajpgi.00453.2006.

    Article  CAS  PubMed  Google Scholar 

  49. Koehler JA, Baggio LL, Yusta B, Longuet C, Rowland KJ, Cao X, et al. GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7. Cell Metab. 2015;21(3):379–91. https://doi.org/10.1016/j.cmet.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  50. Singh S, Dulai PS, Zarrinpar A, Ramamoorthy S, Sandborn WJ. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol. 2017;14(2):110–21. https://doi.org/10.1038/nrgastro.2016.181.

    Article  CAS  PubMed  Google Scholar 

  51. Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF. A population-based case control study of potential risk factors for IBD. Am J Gastroenterol. 2006;101(5):993–1002. https://doi.org/10.1111/j.1572-0241.2006.00381.x.

    Article  PubMed  Google Scholar 

  52. Sentongo TA, Semeao EJ, Piccoli DA, Stallings VA, Zemel BS. Growth, body composition, and nutritional status in children and adolescents with Crohn’s disease. J Pediatr Gastroenterol Nutr. 2000;31(1):33–40. https://doi.org/10.1097/00005176-200007000-00009.

    Article  CAS  PubMed  Google Scholar 

  53. Calkins BM, Mendeloff AI. Epidemiology of inflammatory bowel disease. Epidemiol Rev. 1986;8:60–91. https://doi.org/10.1093/oxfordjournals.epirev.a036296.

    Article  CAS  PubMed  Google Scholar 

  54. Lynn AM, Harmsen WS, Aniwan S, Tremaine WJ, Loftus EV. Su1855 - prevalence of obesity and influence on phenotype within a population-based cohort of inflammatory bowel disease patients. Gastroenterology. 2018;154(6, Supplement 1):S-608. https://doi.org/10.1016/S0016-5085(18)32201-7.

  55. Lynn AM, Harmsen WS, Tremaine WJ, Loftus EV. Su1872 - trends in the prevalence of overweight and obesity at the time of inflammatory bowel disease diagnosis: a population-based study. Gastroenterology. 2018;154(6, Supplement 1):S-614-S-5. https://doi.org/10.1016/S0016-5085(18)32218-2.

  56. Moran GW, Dubeau MF, Kaplan GG, Panaccione R, Ghosh S. The increasing weight of Crohn’s disease subjects in clinical trials: a hypothesis-generatings time-trend analysis. Inflamm Bowel Dis. 2013;19(13):2949–56. https://doi.org/10.1097/MIB.0b013e31829936a4.

    Article  PubMed  Google Scholar 

  57. Nic Suibhne T, Raftery TC, McMahon O, Walsh C, O’Morain C, O’Sullivan M. High prevalence of overweight and obesity in adults with Crohn’s disease: associations with disease and lifestyle factors. J Crohns Colitis. 2013;7(7):e241–8. https://doi.org/10.1016/j.crohns.2012.09.009.

    Article  PubMed  Google Scholar 

  58. Steed H, Walsh S, Reynolds N. A brief report of the epidemiology of obesity in the inflammatory bowel disease population of Tayside. Scotland Obes Facts. 2009;2(6):370–2. https://doi.org/10.1159/000262276.

    Article  PubMed  Google Scholar 

  59. • Losurdo G, La Fortezza RF, Iannone A, Contaldo A, Barone M, Ierardi E, et al. Prevalence and associated factors of obesity in inflammatory bowel disease: a case-control study. World J Gastroenterol. 2020;26(47):7528–37. https://doi.org/10.3748/wjg.v26.i47.7528. This study revealed a high prevalence of CVD risk factors among obese patients with IBD.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021;320(3):C375–91. https://doi.org/10.1152/ajpcell.00379.2020.

    Article  CAS  PubMed  Google Scholar 

  61. Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015;16(2):127–36. https://doi.org/10.1111/obr.12242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kredel L, Batra A, Siegmund B. Role of fat and adipokines in intestinal inflammation. Curr Opin Gastroenterol. 2014;30(6):559–65. https://doi.org/10.1097/MOG.0000000000000116.

    Article  CAS  PubMed  Google Scholar 

  63. Paeschke A, Erben U, Kredel LI, Kuhl AA, Siegmund B. Role of visceral fat in colonic inflammation: from Crohn’s disease to diverticulitis. Curr Opin Gastroenterol. 2017;33(1):53–8. https://doi.org/10.1097/MOG.0000000000000324.

    Article  CAS  PubMed  Google Scholar 

  64. Bilski J, Mazur-Bialy A, Wojcik D, Surmiak M, Magierowski M, Sliwowski Z, et al. Role of obesity, mesenteric adipose tissue, and adipokines in inflammatory bowel diseases. Biomolecules. 2019;9(12). https://doi.org/10.3390/biom9120780.

  65. Elhag DA, Kumar M, Saadaoui M, Akobeng AK, Al-Mudahka F, Elawad M, et al. Inflammatory bowel disease treatments and predictive biomarkers of therapeutic response. Int J Mol Sci. 2022;23(13). https://doi.org/10.3390/ijms23136966.

  66. Weidinger C, Hegazy AN, Siegmund B. The role of adipose tissue in inflammatory bowel diseases. Curr Opin Gastroenterol. 2018;34(4):183–6. https://doi.org/10.1097/MOG.0000000000000445.

    Article  CAS  PubMed  Google Scholar 

  67. Karaskova E, Velganova-Veghova M, Geryk M, Foltenova H, Kucerova V, Karasek D. Role of adipose tissue in inflammatory bowel disease. Int J Mol Sci. 2021;22(8). https://doi.org/10.3390/ijms22084226.

  68. Mao R, Kurada S, Gordon IO, Baker ME, Gandhi N, McDonald C, et al. The mesenteric fat and intestinal muscle interface: creeping fat influencing stricture formation in Crohn’s disease. Inflamm Bowel Dis. 2019;25(3):421–6. https://doi.org/10.1093/ibd/izy331.

    Article  PubMed  Google Scholar 

  69. Mao R, Doyon G, Gordon IO, Li J, Lin S, Wang J, et al. Activated intestinal muscle cells promote preadipocyte migration: a novel mechanism for creeping fat formation in Crohn’s disease. Gut. 2022;71(1):55–67. https://doi.org/10.1136/gutjnl-2020-323719.

    Article  CAS  PubMed  Google Scholar 

  70. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF, et al. Obesity Nat Rev Dis Primers. 2017;3:17034. https://doi.org/10.1038/nrdp.2017.34.

    Article  PubMed  Google Scholar 

  71. Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106(4):563–73. https://doi.org/10.1038/ajg.2011.44.

    Article  CAS  PubMed  Google Scholar 

  72. Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am J Clin Nutr. 1996;63(5):741–5. https://doi.org/10.1093/ajcn/63.5.741.

    Article  CAS  PubMed  Google Scholar 

  73. Helms TH, Mullins RD, Thomas-Ahner JM, Kulp SK, Campbell MJ, Lucas F, et al. Inhibition of androgen/AR signaling inhibits diethylnitrosamine (DEN) induced tumour initiation and remodels liver immune cell networks. Sci Rep. 2021;11(1):3646. https://doi.org/10.1038/s41598-021-82252-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–50. https://doi.org/10.1097/MIB.0000000000000750.

    Article  PubMed  Google Scholar 

  75. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, et al. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care. 2009;32(12):2281–7. https://doi.org/10.2337/dc09-0979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim ER, Park JS, Kim JH, Oh JY, Oh IJ, Choi DH, et al. A GLP-1/GLP-2 receptor dual agonist to treat NASH: targeting the gut-liver axis and microbiome. Hepatology. 2022;75(6):1523–38. https://doi.org/10.1002/hep.32235.

    Article  CAS  PubMed  Google Scholar 

  77. He S, Kahles F, Rattik S, Nairz M, McAlpine CS, Anzai A, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019;566(7742):115–9. https://doi.org/10.1038/s41586-018-0849-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Teixeira LG, Leonel AJ, Aguilar EC, Batista NV, Alves AC, Coimbra CC, et al. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids Health Dis. 2011;10:204. https://doi.org/10.1186/1476-511X-10-204.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng L, Jin H, Qiang Y, Wu S, Yan C, Han M, et al. High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. Int Immunopharmacol. 2016;40:1–10. https://doi.org/10.1016/j.intimp.2016.08.018.

    Article  CAS  PubMed  Google Scholar 

  80. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95. https://doi.org/10.1056/NEJMra043430.

    Article  CAS  PubMed  Google Scholar 

  81. Henein MY, Vancheri S, Longo G, Vancheri F. The role of inflammation in cardiovascular disease. Int J Mol Sci. 2022;23(21). https://doi.org/10.3390/ijms232112906.

  82. Arvanitakis KD, Arvanitaki AD, Karkos CD, Zintzaras E, Germanidis GS. The risk of venous thromboembolic events in patients with inflammatory bowel disease: a systematic review and meta-analysis. Ann Gastroenterol. 2021;34(5):680–90. https://doi.org/10.20524/aog.2021.0631.

  83. Danese S, Motte Cd Cde L, Fiocchi C. Platelets in inflammatory bowel disease: clinical, pathogenic, and therapeutic implications. Am J Gastroenterol. 2004;99(5):938–45. https://doi.org/10.1111/j.1572-0241.2004.04129.x.

  84. Schinzari F, Armuzzi A, De Pascalis B, Mores N, Tesauro M, Melina D, et al. Tumor necrosis factor-alpha antagonism improves endothelial dysfunction in patients with Crohn’s disease. Clin Pharmacol Ther. 2008;83(1):70–6. https://doi.org/10.1038/sj.clpt.6100229.

    Article  CAS  PubMed  Google Scholar 

  85. Jensen LJ, Pedersen S, Bjerre M, Mogelvang R, Jensen JS, Flyvbjerg A. Plasma calprotectin predicts mortality in patients with ST segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Interv Cardiol. 2010;23(2):123–9. https://doi.org/10.1111/j.1540-8183.2010.00532.x.

    Article  PubMed  Google Scholar 

  86. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. https://doi.org/10.1186/1475-2891-14-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sappati Biyyani RS, Putka BS, Mullen KD. Dyslipidemia and lipoprotein profiles in patients with inflammatory bowel disease. J Clin Lipidol. 2010;4(6):478–82. https://doi.org/10.1016/j.jacl.2010.08.021.

    Article  PubMed  Google Scholar 

  88. Tan VP, Chung A, Yan BP, Gibson PR. Venous and arterial disease in inflammatory bowel disease. J Gastroenterol Hepatol. 2013;28(7):1095–113. https://doi.org/10.1111/jgh.12260.

    Article  PubMed  Google Scholar 

  89. Sun HH, Tian F. Inflammatory bowel disease and cardiovascular disease incidence and mortality: a meta-analysis. Eur J Prev Cardiol. 2018;25(15):1623–31. https://doi.org/10.1177/2047487318792952.

    Article  PubMed  Google Scholar 

  90. Singh S, Singh H, Loftus EV, Jr., Pardi DS. Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2014;12(3):382–93 e1:quiz e22. https://doi.org/10.1016/j.cgh.2013.08.023.

  91. Cook NR, Buring JE, Ridker PM. The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med. 2006;145(1):21–9. https://doi.org/10.7326/0003-4819-145-1-200607040-00128.

    Article  CAS  PubMed  Google Scholar 

  92. Kristensen SL, Lindhardsen J, Ahlehoff O, Erichsen R, Lamberts M, Khalid U, et al. Increased risk of atrial fibrillation and stroke during active stages of inflammatory bowel disease: a nationwide study. Europace. 2014;16(4):477–84. https://doi.org/10.1093/europace/eut312.

    Article  PubMed  Google Scholar 

  93. Choi YJ, Choi EK, Han KD, Park J, Moon I, Lee E, et al. Increased risk of atrial fibrillation in patients with inflammatory bowel disease: a nationwide population-based study. World J Gastroenterol. 2019;25(22):2788–98. https://doi.org/10.3748/wjg.v25.i22.2788.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu L, Chen J, Wang L, Chen C, Chen L. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database. Front Endocrinol (Lausanne). 2022;13:1043789. https://doi.org/10.3389/fendo.2022.1043789.

    Article  PubMed  Google Scholar 

  95. Wharton S, Davies M, Dicker D, Lingvay I, Mosenzon O, Rubino DM, et al. Managing the gastrointestinal side effects of GLP-1 receptor agonists in obesity: recommendations for clinical practice. Postgrad Med. 2022;134(1):14–9. https://doi.org/10.1080/00325481.2021.2002616.

    Article  CAS  PubMed  Google Scholar 

  96. Nauck MA, Meier JJ. Management of endocrine disease: are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181(6):R211–34. https://doi.org/10.1530/EJE-19-0566.

    Article  CAS  PubMed  Google Scholar 

  97. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102.

  98. Pratley RE, Aroda VR, Lingvay I, Lüdemann J, Andreassen C, Navarria A, et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018;6(4):275–86. https://doi.org/10.1016/S2213-8587(18)30024-X.

    Article  CAS  PubMed  Google Scholar 

  99. Weiss T, Yang L, Carr RD, Pal S, Sawhney B, Boggs R, et al. Real-world weight change, adherence, and discontinuation among patients with type 2 diabetes initiating glucagon-like peptide-1 receptor agonists in the UK. BMJ Open Diabetes Res Care. 2022;10(1). https://doi.org/10.1136/bmjdrc-2021-002517.

  100. de Castro MM, Pascoal LB, Steigleder KM, Siqueira BP, Corona LP, Ayrizono MLS, et al. Role of diet and nutrition in inflammatory bowel disease. World J Exp Med. 2021;11(1):1–16. https://doi.org/10.5493/wjem.v11.i1.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Romera I, Cebrian-Cuenca A, Alvarez-Guisasola F, Gomez-Peralta F, Reviriego J. A review of practical issues on the use of glucagon-like peptide-1 receptor agonists for the management of type 2 diabetes. Diabetes Ther. 2019;10(1):5–19. https://doi.org/10.1007/s13300-018-0535-9.

    Article  PubMed  Google Scholar 

  102. Bettge K, Kahle M, Abd El Aziz MS, Meier JJ, Nauck MA. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes Obes Metab. 2017;19(3):336–47. https://doi.org/10.1111/dom.12824.

  103. Xia B, Yang M, Nguyen LH, He Q, Zhen J, Yu Y, et al. Regular use of proton pump inhibitor and the risk of inflammatory bowel disease: pooled analysis of 3 prospective cohorts. Gastroenterology. 2021;161(6):1842–52 e10. https://doi.org/10.1053/j.gastro.2021.08.005.

  104. Lu TX, Dapas M, Lin E, Peters T, Sakuraba A. The influence of proton pump inhibitor therapy on the outcome of infliximab therapy in inflammatory bowel disease: a patient-level meta-analysis of randomised controlled studies. Gut. 2021;70(11):2076–84. https://doi.org/10.1136/gutjnl-2020-321609.

    Article  CAS  PubMed  Google Scholar 

  105. Baig MMA, Irfan SA, Sumbal A, Sumbal R, Kumar S, Ahmad J, et al. Prevalence of gallstones in ulcerative colitis and Crohn’s disease: a systematic review and meta-analysis. Cureus. 2022;14(6):e26121. https://doi.org/10.7759/cureus.26121.

  106. Uko V, Thangada S, Radhakrishnan K. Liver disorders in inflammatory bowel disease. Gastroenterol Res Pract. 2012;2012:642923. https://doi.org/10.1155/2012/642923.

  107. Mertz A, Nguyen NA, Katsanos KH, Kwok RM. Primary sclerosing cholangitis and inflammatory bowel disease comorbidity: an update of the evidence. Ann Gastroenterol. 2019;32(2):124–33. https://doi.org/10.20524/aog.2019.0344.

  108. He L, Wang J, Ping F, Yang N, Huang J, Li Y, et al. Association of glucagon-like peptide-1 receptor agonist use with risk of gallbladder and biliary diseases: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2022;182(5):513–9. https://doi.org/10.1001/jamainternmed.2022.0338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fitch A, Ingersoll AB. Patient initiation and maintenance of GLP-1 RAs for treatment of obesity: a narrative review and practical considerations for primary care providers. Postgrad Med. 2021;133(3):310–9. https://doi.org/10.1080/00325481.2020.1845534.

    Article  CAS  PubMed  Google Scholar 

  110. Chao CY, Battat R, Al Khoury A, Restellini S, Sebastiani G, Bessissow T. Co-existence of non-alcoholic fatty liver disease and inflammatory bowel disease: a review article. World J Gastroenterol. 2016;22(34):7727–34. https://doi.org/10.3748/wjg.v22.i34.7727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ramos LR, Sachar DB, DiMaio CJ, Colombel JF, Torres J. Inflammatory bowel disease and pancreatitis: a review. J Crohns Colitis. 2016;10(1):95–104. https://doi.org/10.1093/ecco-jcc/jjv153.

    Article  PubMed  Google Scholar 

  112. • Cao C, Yang S, Zhou Z. GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials. Endocrine. 2020;68(3):518–25. https://doi.org/10.1007/s12020-020-02223-6. A pooled analysis of CVOTs showing that therapy with GLP-1 RA does not increase the risk of acute pancreatitis or pancreatic cancer.

    Article  CAS  PubMed  Google Scholar 

  113. Greuter T, Vavricka S, Konig AO, Beaugerie L, Scharl M. Swiss Ibdnet aowgotSSoG. Malignancies Inflamm Bowel Dis Digestion. 2020;101(Suppl 1):136–45. https://doi.org/10.1159/000509544.

    Article  CAS  Google Scholar 

  114. Cao C, Yang S, Zhou Z. GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis of randomized controlled trials. Endocrine. 2019;66(2):157–65. https://doi.org/10.1007/s12020-019-02055-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KA and TK reviewed the literature and drafted the first version of the manuscript. DSP, GM, OM, MD, OG, KK, and GG reviewed the literature and edited the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Georgios Germanidis.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

TK has received honoraria for lectures from AstraZeneca, Boehringer Ingelheim, Pharmaserve Lilly, and Novo Nordisk, for advisory boards from Novo Nordisk, and has participated in sponsored studies by Eli-Lilly and Novo Nordisk. DSP declares associations to Abbott, Alkaloid, AstraZeneca, Boehringer Ingelheim, Berlin-Chemie, Eli Lilly, Galenika, Krka, Merck, Novo Nordisk, PharmaSwiss, Sanofi-Aventis, Servier, Viatris, and Worwag Pharma. GM has received honoraria for lectures from AstraZeneca and Novo Nordisk. OM received speaker’s honoraria from NovoNordisk, Eli Lilly, Sanofi, and Boehringer Ingelheim. KK has received honoraria for lectures/advisory boards and research support from AstraZeneca, Boehringer Ingelheim, Pharmaserve Lilly, Sanofi-Aventis, ELPEN, MSD, and Novo Nordisk. Other authors report no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvanitakis, K., Koufakis, T., Popovic, D. et al. GLP-1 Receptor Agonists in Obese Patients with Inflammatory Bowel Disease: from Molecular Mechanisms to Clinical Considerations and Practical Recommendations for Safe and Effective Use. Curr Obes Rep 12, 61–74 (2023). https://doi.org/10.1007/s13679-023-00506-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-023-00506-3

Keywords

Navigation