Skip to main content

Advertisement

Log in

Metabolically Healthy Obesity: Are Interventions Useful?

  • REVIEW
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to detail the current global research state of metabolically healthy obesogenesis with regard to metabolic factors, disease prevalence, comparisons to unhealthy obesity, and targeted interventions to reverse or delay progression from metabolically healthy to unhealthy obesity.

Recent Findings

As a long-term condition with increased risk of cardiovascular, metabolic, and all-cause mortality risks, obesity threatens public health on a national level. The recent discovery of metabolically healthy obesity (MHO), a transitional condition during which obese persons carry comparatively lower health risks, has added to confusion about the true effect of visceral fat and subsequent long-term health risks. In this context, the evaluation of fat loss interventions, such as bariatric surgery, lifestyle changes (diet/exercise), and hormonal therapies require re-evaluation in light of evidence that progression to high-risk stages of obesity relies on metabolic status and that strategies to protect the metabolism may be useful in the prevention of metabolically unhealthy obesity.

Summary

Typical calorie-based exercise and diet interventions have failed to reduce the prevalence of unhealthy obesity. Holistic lifestyle, psychological, hormonal, and pharmacological interventions for MHO, on the other hand, may at least prevent progression to metabolically unhealthy obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All presented data are from reported sources available from public websites or published peer-reviewed journals.

Abbreviations

1RM:

One-repetition maximum

ADF:

Alternate-day fasting

AHA:

American Heart Association

ALT:

Alanine transaminase

ATPIII:

Adult treatment panel III

BAT:

Brown adipose tissue

BMI:

Body mass index

CBT:

Cognitive behavioral therapy

DASH:

Dietary approaches to stop hypertension

EOSS:

Edmonton Obesity Staging System

GERD:

Gastroesophageal reflux disease

GLP-1:

Glucagon-like peptide-1

HDL-C:

High-density lipoprotein - cholesterol

HIAT:

High-intensity aerobic exercise training

HIIT:

High-intensity interval training

HOMA-IR:

Homeostatic Model Assessment for Insulin Resistance

IDF:

International Diabetes Federation

IF:

Intermittent fasting

LDL-C:

Low-density cholesterol

LEPR:

Leptin receptor

MD:

Mediterranean diet

METs:

Metabolic equivalents

MHO:

Metabolically healthy obesity

MHOW:

Metabolically healthy overweight

MICT:

Medium-intensity continuous training

MONW:

Metabolically obese normal weight

MUO:

Metabolically unhealthy obesity

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NHLBI:

National Heart Lung and Blood Institute

PCSK1:

Proprotein convertase subtilisin/kexin type 1

POMC:

Pro-opiomelanocortin

RCT:

Random clinical trial

SAD:

Standard American diet

TRF:

Time-restricted feeding

VLDL-C:

Very low-density cholesterol

VO2Max:

Volume of oxygen at maximum capacity

WAT:

White adipose tissue

WHO:

World Health Organization

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sharma AM, Kushner RF. A proposed clinical staging system for obesity. Int J Obes. 2009;33:289–95. http://www.ncbi.nlm.nih.gov/pubmed/19188927. Accessed 25 Nov 2022.

  2. •• Tsatsoulis A, Paschou SA. Metabolically healthy obesity: criteria, epidemiology, controversies, and consequences. Curr Obes Rep. 2020;9(2):109–20. A complete treatise on all aspects of MHO, including epidemiology.

  3. Ho-Pham LT, Campbell LV, Nguyen TV. More on body fat cutoff points. Mayo Clin Proc. 2011;86:584. http://www.ncbi.nlm.nih.gov/pubmed/21628621. Accessed 25 Nov 2022. author reply 584-5.

  4. Fyhofer S. Report of the council on science and public health - report 3-A-13. 2013. p. 1–14. https://www.ama-assn.org/sites/default/files/media-browser/public/about-ama/councils/CouncilReports/council-on-science-public-health/a13csaph3.pdf. Accessed 25 Nov 2022.

  5. Stommel M, Schoenborn CA. Accuracy and usefulness of BMI measures based on self-reported weight and height: findings from the NHANES & NHIS 2001–2006. BMC Public Health. 2009;9(1):421.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nuttall FQ. Body Mass Index. Nutr Today. 2015;50(3):117–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yamazaki H, Tauchi S, Machann J, Haueise T, Yamamoto Y, Dohke M, et al. Fat distribution patterns and future type 2 diabetes. Diabetes. 2022;71(9):1937–45.

    Article  CAS  PubMed  Google Scholar 

  8. Gurunathan U, Myles PS. Limitations of body mass index as an obesity measure of perioperative risk. Br J Anaesth. 2016;116:319–21. https://linkinghub.elsevier.com/retrieve/pii/S0007091217304385. Accessed 25 Nov 2022.

  9. •• Blüher M. Metabolically healthy obesity. Endocr Rev. 2020;41. http://www.ncbi.nlm.nih.gov/pubmed/32128581. Accessed 25 Nov 2022. A comprehensive and timely review of all aspects of metabolically healthy obesity with emphasis on endocrine involvement.

  10. April-Sanders AK, Rodriguez CJ. Metabolically healthy obesity redefined. JAMA Netwo Open. 2021;4:e218860. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2779690. Accessed 25 Nov 2022.

  11. Candi E, Campanelli M, Sica G, Schinzari F, Rovella V, Daniele ND, et al. Differences in the vascular and metabolic profiles between metabolically healthy and unhealthy obesity. Endocr Metab Sci. 2021;2:100077. https://linkinghub.elsevier.com/retrieve/pii/S2666396120300315. Accessed 25 Nov 2022.

  12. Martínez-Larrad MT, Anchuelo AC, Prado ND, Rueda JMI, Gabriel R, Serrano-Ríos M. Profile of individuals who are metabolically healthy obese using different definition criteria. A Population-Based Analysis in the Spanish Population. Plos One. 2014;9(9):e106641.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hinnouho G-M, Czernichow S, Dugravot A, Batty GD, Kivimaki M, Singh-Manoux A. Metabolically healthy obesity and risk of mortality. Diabetes Care. 2013;36(8):2294–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zembic A, Eckel N, Stefan N, Baudry J, Schulze MB. An empirically derived definition of metabolically healthy obesity based on risk of cardiovascular and total mortality. Jama Netw Open. 2021;4(5):e218505.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu C, Wang C, Guan S, Liu H, Wu X, Zhang Z, et al. The prevalence of metabolically healthy and unhealthy obesity according to different criteria. Obes Facts. 2019;12:78–90. http://www.ncbi.nlm.nih.gov/pubmed/30814477. Accessed 25 Nov 2022.

  16. Zhang Y, Fu J, Yang S, Yang M, Liu A, Wang L, et al. Prevalence of metabolically obese but normal weight (MONW) and metabolically healthy but obese (MHO) in Chinese Beijing urban subjects. BioSci Trends. 2017;11:418–26. https://www.jstage.jst.go.jp/article/bst/11/4/11_2017.01016/_article. Accessed 25 Nov 2022.

  17. Ottosson F, Smith E, Ericson U, Brunkwall L, Orho-Melander M, Somma SD, et al. Metabolome-defined obesity and the risk of future type 2 diabetes and mortality. Diabetes Care. 2022;45(5):1260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23:120–33. https://www.nature.com/articles/s41576-021-00414-z. Accessed 25 Nov 2022.

  19. Zaghlool SB, Sharma S, Molnar M, Matías-García PR, Elhadad MA, Waldenberger M, et al. Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat Commun. 2021;12(1):1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. •• Bagheri P, Khalili D, Seif M, Rezaianzadeh A. Dynamic behavior of metabolic syndrome progression: a comprehensive systematic review on recent discoveries. BMC Endocr Disord. 2021;21:54. http://www.ncbi.nlm.nih.gov/pubmed/33752643. Accessed 25 Nov 2022. A comprehensive meta-study detailing the progression of metabolic syndrome due to dyslipidemia.

  21. Liu M, Saredy J, Zhang R, Shao Y, Sun Y, Yang WY, et al. Approaching inflammation paradoxes–proinflammatory cytokine blockages induce inflammatory regulators. Front Immunol. 2020;11. https://www.frontiersin.org/articles/10.3389/fimmu.2020.554301/full. Accessed 25 Nov 2022.

  22. Kwiatkowski S, Kajdy A, Stefańska K, Bednarek-Jędrzejek M, Dzidek S, Tousty P, et al. PPARγ–a factor linking metabolically unhealthy obesity with placental pathologies. Int J Mol Sci. 2021;22:13167. https://www.mdpi.com/1422-0067/22/23/13167. Accessed 25 Nov 2022.

  23. Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89:2569–75. https://academic.oup.com/jcem/article/89/6/2569/2870288. Accessed 25 Nov 2022.

  24. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5(4):1218–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Telle-Hansen VH, Christensen JJ, Formo GA, Holven KB, Ulven SM. A comprehensive metabolic profiling of the metabolically healthy obesity phenotype. Lipids Health Dis. 2020;19(1):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bridges KG, Jarrett T, Thorpe A, Baus A, Cochran J. Use of the triglyceride to HDL cholesterol ratio for assessing insulin sensitivity in overweight and obese children in rural Appalachia. J Pediatric Endocrinol Metab. 2016;29(2):153–6.

    Article  CAS  Google Scholar 

  27. Park B, Jung DH, Lee HS, Lee YJ. Triglyceride to HDL-cholesterol ratio and the incident risk of ischemic heart disease among Koreans without diabetes: a longitudinal study using national health insurance data. Front Cardiovasc Med. 2021;8:716698.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Berk KA, Yahya R, Verhoeven AJM, Touw J, Leijten FP, van Rossum EF, et al. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruan X, Li Z, Zhang Y, Yang L, Pan Y, Wang Z, et al. Apolipoprotein A-I possesses an anti-obesity effect associated with increase of energy expenditure and up-regulation of UCP1 in brown fat. J Cell Mol Med. 2011;15(4):763–72.

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Blackett P, Khan S, Lee E. Apolipoproteins A-I, B, and C-III and obesity in young adult Cherokee. J Lipids. 2017;2017:8236325.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2020;10. https://www.frontiersin.org/article/10.3389/fphys.2019.01607/full. Accessed 25 Nov 2022.

  32. McMurray F, Patten DA, Harper M-E. Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity. 2016;24:2301–10. http://www.ncbi.nlm.nih.gov/pubmed/27804267. Accessed 25 Nov 2022.

  33. Xu R, Gao X, Wan Y, Fan Z. Association of metabolically healthy overweight phenotype with abnormalities of glucose levels and blood pressure among Chinese adults. JAMA Netw Open. 2019;2:e1914025. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2753521. Accessed 25 Nov 2022.

  34. Basurto L, Sánchez L, Díaz A, Valle M, Robledo A, Martínez-Murillo C. Differences between metabolically healthy and unhealthy obesity in PAI-1 level: fibrinolysis, body size phenotypes and metabolism. Thromb Res. 2019;180:110–4. http://www.ncbi.nlm.nih.gov/pubmed/31288156. Accessed 25 Nov 2022.

  35. Park B, Hong J, Park H. Neuroimaging biomarkers to associate obesity and negative emotions. Sci Rep. 2017;7:7664. http://www.nature.com/articles/s41598-017-08272-8. Accessed 25 Nov 2022.

  36. Liu L, Liu S, Song Q, Luo D, Su Y, Qi X, et al. Association of metabolic obesity phenotypes and total testosterone in Chinese male population. Diabetes Metab Syndr Obes Targets Ther. 2021;14:399–408. https://www.dovepress.com/association-of-metabolic-obesity-phenotypes-and-total-testosterone-in--peer-reviewed-article-DMSO. Accessed 25 Nov 2022.

  37. Hewagalamulage SD, Lee TK, Clarke IJ, Henry BA. Stress, cortisol, and obesity: a role for cortisol responsiveness in identifying individuals prone to obesity. Domest Anim Endocrinol. 2016;56(Suppl):S112–20. http://www.ncbi.nlm.nih.gov/pubmed/27345309. Accessed 25 Nov 2022.

  38. Nimptsch K, Konigorski S, Pischon T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism. 2019;92:61–70. https://linkinghub.elsevier.com/retrieve/pii/S002604951830266X. Accessed 25 Nov 2022.

  39. Ignacio RMC, Kim C-S, Kim S-K. Immunological profiling of obesity. J Lifestyle Med. 2014;4:1–7. http://www.ncbi.nlm.nih.gov/pubmed/26064849. Accessed 25 Nov 2022.

  40. Christou KA, Christou GA, Karamoutsios A, Vartholomatos G, Gartzonika K, Tsatsoulis A, et al. The regulation of serum resistin levels in metabolically healthy and unhealthy obese individuals. Hormones. 2020;19:523–9. http://www.ncbi.nlm.nih.gov/pubmed/32328905. Accessed 25 Nov 2022.

  41. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.

    Article  CAS  PubMed  Google Scholar 

  42. Al-Khalidi B, Kimball SM, Kuk JL, Ardern CI. Metabolically healthy obesity, vitamin D, and all-cause and cardiometabolic mortality risk in NHANES III. Clin Nutr. 2019;38:820–8. http://www.ncbi.nlm.nih.gov/pubmed/29525513. Accessed 28 Nov 2022.

  43. Rey-López JP, Rezende LF, Pastor-Valero M, Tess BH. Prevalence of metabolically healthy obesity. Obes Rev. 2014;15(10):781–90.

    Article  PubMed  Google Scholar 

  44. van Vliet-Ostaptchouk JV, Nuotio M-L, Slagter SN, Doiron D, Fischer K, Foco L, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. Bmc Endocr Disord. 2014;14(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yu S, Guo X, Li GX, Yang H, Zheng L, Sun Y. Metabolic healthy obesity is associated with higher incidence of mild decrease estimate glomerular rate in rural northeast Chinese. BMC Nephrol. 2020;21:505. https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-020-02164-2. Accessed 28 Nov 2022.

  46. Itoh H, Kaneko H, Kiriyama H, Kamon T, Fujiu K, Morita K, et al. Metabolically healthy obesity and the risk of cardiovascular disease in the general population - analysis of a nationwide epidemiological database. Circ J. 2021;85(6):914–20.

    Article  CAS  PubMed  Google Scholar 

  47. Kim S-A, Lim K, Lee J-K, Kang D, Shin S. Metabolically healthy obesity and the risk of all-cause and cardiovascular disease mortality in a Korean population: a prospective cohort study. BMJ Open. 2021;11(9):e049063.

    Article  PubMed  Google Scholar 

  48. Kruger HS, Lange-Loots ZD, Kruger IM, Pieters M. The metabolic profiles of metabolically healthy obese and metabolically unhealthy obese South African adults over 10 years. Int J Environ Res Public Health. 2022;19:5061. https://www.mdpi.com/1660-4601/19/9/5061. Accessed 28 Nov 2022.

  49. Doumatey AP, Bentley AR, Zhou J, Huang H, Adeyemo A, Rotimi CN. Paradoxical hyperadiponectinemia is associated with the metabolically healthy obese (MHO) phenotype in African Americans. J Endocrinol Metab. 2012;2:51–65. http://www.ncbi.nlm.nih.gov/pubmed/23293696. Accessed 28 Nov 2022.

  50. Phipps ME, Chan KK, Naidu R, Mohamad NW, Hoh B-P, Quek K-F, et al. Cardio-metabolic health risks in indigenous populations of Southeast Asia and the influence of urbanization. BMC Public Health. 2015;15(1):47.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kasahara H, Lu NL, Lu TL, Nguyen TT, Yamazaki T, Amano T. Obesity and metabolic syndrome in urban Vietnam. Ningen Dock Int. 2022;ND22–004.

  52. Nguyen SN, Tran VD, Le TTM, Nga HT, Tho NTT. High prevalence of metabolic syndrome among overweight adults in Vietnam based on different criteria: results from a community-based study. Clin Epidemiol Global Heal. 2021;12:100852.

    Article  CAS  Google Scholar 

  53. Mathis BJ, Tanaka K, Hiramatsu Y. Factors of obesity and metabolically healthy obesity in Asia. Medicina. 2022;58(9):1271.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim Y, Chang Y, Cho YK, Ahn J, Shin H, Ryu S. Metabolically healthy versus unhealthy obesity and risk of fibrosis progression in non-alcoholic fatty liver disease. Liver Int. 2019;39(10):1884–94.

    Article  CAS  PubMed  Google Scholar 

  55. Martinez-Gomez D, Ortega FB, Hamer M, Lopez-Garcia E, Struijk E, Sadarangani KP, et al. Physical activity and risk of metabolic phenotypes of obesity: a prospective Taiwanese cohort study in more than 200,000 adults. Mayo Clin Proc. 2019;94:2209–19. http://www.ncbi.nlm.nih.gov/pubmed/31619366. Accessed 28 Nov 2022.

  56. Yang C, Liu X, Dang Y, Li J, Jing J, Tian D, et al. Obesity metabolic phenotype, changes in time and risk of diabetes mellitus in an observational prospective study on general population. Int J Public Health. 2022;67:1604986.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou Z, Macpherson J, Gray SR, Gill JMR, Welsh P, Celis-Morales C, et al. Are people with metabolically healthy obesity really healthy? A prospective cohort study of 381,363 UK Biobank participants. Diabetologia. 2021;64(9):1963–72.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus – mechanisms and treatments. Nat Rev Gastroentero. 2021;18(9):599–612.

    Article  Google Scholar 

  59. Karimabad MN, Khalili P, Ayoobi F, Esmaeili-Nadimi A, Vecchia CL, Jamali Z. Serum liver enzymes and diabetes from the Rafsanjan cohort study. Bmc Endocr Disord. 2022;22(1):127.

    Article  Google Scholar 

  60. Zhang X, Heredia NI, Balakrishnan M, Thrift AP. Prevalence and factors associated with NAFLD detected by vibration controlled transient elastography among US adults: results from NHANES 2017–2018. PLoS ONE. 2021;16(6):e0252164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kouvari M, Chrysohoou C, Skoumas J, Pitsavos C, Panagiotakos DB, Mantzoros CS, et al. The presence of NAFLD influences the transition of metabolically healthy to metabolically unhealthy obesity and the ten-year cardiovascular disease risk: a population-based cohort study. Metabolism. 2022;128:154893.

    Article  CAS  PubMed  Google Scholar 

  62. Latifi SM, Karandish M, Shahbazian H, Taha JM, Cheraghian B, Moradi M. Prevalence of metabolically healthy obesity (MHO) and its relation with incidence of metabolic syndrome, hypertension and type 2 diabetes amongst individuals aged over 20 years in Ahvaz: a 5 year cohort study (2009–2014). Diabetes Metab Syndr Clin Res Rev. 2017;11:S1037–40.

    Article  Google Scholar 

  63. Wang B, Zhang M, Wang S, Wang C, Wang J, Li L, et al. Dynamic status of metabolically healthy overweight/obesity and metabolically unhealthy and normal weight and the risk of type 2 diabetes mellitus: a cohort study of a rural adult Chinese population. Obes Res Clin Pract. 2018;12(1):61–71.

    Article  PubMed  Google Scholar 

  64. Camhi SM, Must A, Gona PN, Hankinson A, Odegaard A, Reis J, et al. Duration and stability of metabolically healthy obesity over 30 years. Int J Obes. 2019;43(9):1803–10.

    Article  CAS  Google Scholar 

  65. Yeh T-L, Hsu H-Y, Tsai M-C, Hsu L-Y, Hwang L-C, Chien K-L. Association between metabolically healthy obesity/overweight and cardiovascular disease risk: a representative cohort study in Taiwan. PloS one. 2021;16:e0246378. http://www.ncbi.nlm.nih.gov/pubmed/33524067. Accessed 28 Nov 2022.

  66. Itoh H, Kaneko H, Kiriyama H, Kamon T, Fujiu K, Morita K, et al. Metabolically healthy obesity and the risk of cardiovascular disease in the general population ― analysis of a Nationwide Epidemiological Database. Circ J. 2021;85:914–20. https://www.jstage.jst.go.jp/article/circj/85/6/85_CJ-20-1040/_article. Accessed 28 Nov 2022.

  67. Gutiérrez-Grobe Y, Juárez-Hernández E, Sánchez-Jiménez BA, Uribe-Ramos MH, Ramos-Ostos MH, Uribe M, et al. Less liver fibrosis in metabolically healthy compared with metabolically unhealthy obese patients with non-alcoholic fatty liver disease. Diabetes Metab. 2017;43:332–7. http://www.ncbi.nlm.nih.gov/pubmed/28318912. Accessed 28 Nov 2022.

  68. Tutunchi H, Naeini F, Ebrahimi-Mameghani M, Najafipour F, Mobasseri M, Ostadrahimi A. Metabolically healthy and unhealthy obesity and the progression of liver fibrosis: a cross-sectional study. Clin Res Hepatol Gastroenterol. 2021;45:101754. https://linkinghub.elsevier.com/retrieve/pii/S2210740121001339. Accessed 28 Nov 2022.

  69. Hatamoto Y, Goya R, Yamada Y, Yoshimura E, Nishimura S, Higaki Y, et al. Effect of exercise timing on elevated postprandial glucose levels. J Appl Physiol. 2017;123(2):278–84.

    Article  CAS  PubMed  Google Scholar 

  70. Carter S, Solomon TPJ. Exercise-induced improvements in postprandial glucose response are blunted by pre-exercise hyperglycemia: a randomized crossover trial in healthy individuals. Front Endocrinol. 2020;11:566548.

    Article  Google Scholar 

  71. Solomon TPJ, Tarry E, Hudson CO, Fitt AI, Laye MJ. Immediate post-breakfast physical activity improves interstitial postprandial glycemia: a comparison of different activity-meal timings. Pflügers Archiv Eur J Physiol. 2020;472(2):271–80.

    Article  CAS  Google Scholar 

  72. Borer KT, Lin P-J, Wuorinen E. Timing of meals and exercise affects hormonal control of glucoregulation, insulin resistance, substrate metabolism, and gastrointestinal hormones, but has little effect on appetite in postmenopausal women. Nutrients. 2021;13(12):4342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Fogarasi A, Gonzalez K, Dalamaga M, Magkos F. The impact of the rate of weight loss on body composition and metabolism. Curr Obes Rep. 2022;11(2):33–44. High initial weight loss results in better long-term maintenance.

  74. Farhana A, Rehman A. Metabolic consequences of weight reduction. 2022 Jan 18. https://pubmed.ncbi.nlm.nih.gov/34283511/. Accessed 30 Nov 2022.

  75. Trexler ET, Smith-Ryan AE, Norton LE. Metabolic adaptation to weight loss: implications for the athlete. J Int Soc Sport Nutr. 2014;11(1):7.

    Article  Google Scholar 

  76. Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord. 2022;23(1):121–31.

    Article  CAS  PubMed  Google Scholar 

  77. Yu SB, Pekkurnaz G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J Mol Biol. 2018;430(21):3922–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adamska-Patruno E, Ostrowska L, Goscik J, Pietraszewska B, Kretowski A, Gorska M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: a randomized crossover study. Nutr J. 2018;17(1):118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guyenet SJ, Schwartz MW. Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab. 2012;97(3):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen AMH, Draime JA, Berman S, Gardner J, Krauss Z, Martinez J. Food as medicine? Exploring the impact of providing healthy foods on adherence and clinical and economic outcomes. Explor Res Clin Soc Pharm. 2022;5:100129.

    PubMed  PubMed Central  Google Scholar 

  81. Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423–34. http://www.ncbi.nlm.nih.gov/pubmed/17762377. Accessed 30 Nov 2022.

  82. Yang YJ. An overview of current physical activity recommendations in primary care. Korean J Fam Med. 2019;40:135–42. http://www.ncbi.nlm.nih.gov/pubmed/31122003. Accessed 30 Nov 2022.

  83. Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ Can Med Assoc J J l’Assoc Med Canad. 2006;174:801–9. http://www.ncbi.nlm.nih.gov/pubmed/16534088. Accessed 30 Nov 2022.

  84. Jung J, Lee J, Bae E, Kim YC, Kim EY, Lee J, et al. Association between behavioral patterns and mortality among US adults: National Health and Nutrition Examination Survey, 2007–2014. PloS one. 2022;17:e0264213. http://www.ncbi.nlm.nih.gov/pubmed/35180280. Accessed 30 Nov 2022.

  85. Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1:e183605. http://jamanetworkopen.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2018.3605. Accessed 30 Nov 2022.

  86. Corres P, Fryer SM, Aguirre-Betolaza AM, Gorostegi-Anduaga I, Arratibel-Imaz I, Pérez-Asenjo J, et al. A metabolically healthy profile is a transient stage when exercise and diet are not supervised: long-term effects in the EXERDIET-HTA study. Int J Environ Res Public Health. 2020;17. http://www.ncbi.nlm.nih.gov/pubmed/32326133. Accessed 30 Nov 2022.

  87. Salvadori A, Fanari P, Marzullo P, Codecasa F, Tovaglieri I, Cornacchia M, et al. Playing around the anaerobic threshold during COVID-19 pandemic: advantages and disadvantages of adding bouts of anaerobic work to aerobic activity in physical treatment of individuals with obesity. Acta Diabetol. 2021;58:1329–41. https://link.springer.com/10.1007/s00592-021-01747-1. Accessed 30 Nov 2022.

  88. Endo Y, Nourmahnad A, Sinha I. Optimizing skeletal muscle anabolic response to resistance training in aging. Front Physiol. 2020;11:874.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cho YJ, Cho MH, Han B, Park M, Bak S, Park M. The association between the ratio of energy intake to basal metabolic rate and physical activity to sarcopenia: using the Korea National Health and Nutrition Examination Surveys (2008–2011). Korean J Fam Med. 2020;41(3):167–74.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Türk Y, Theel W, Kasteleyn MJ, Franssen FME, Hiemstra PS, Rudolphus A, et al. High intensity training in obesity: a meta-analysis. Obes Sci Pract. 2017;3:258–71. http://www.ncbi.nlm.nih.gov/pubmed/29071102. Accessed 30 Nov 2022.

  91. • Sultana RN, Sabag A, Keating SE, Johnson NA. The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: a systematic review and meta-analysis. Sports Med. 2019;49:1687–721. http://www.ncbi.nlm.nih.gov/pubmed/31401727. Accessed 30 Nov 2022. Low-volume HIIT is not effective for body fat loss but does increase endurance.

  92. Poon ET-C, Siu PM-F, Wongpipit W, Gibala M, Wong SH-S. Alternating high-intensity interval training and continuous training is efficacious in improving cardiometabolic health in obese middle-aged men. J Exerc Sci Fit. 2022;20:40–7. https://linkinghub.elsevier.com/retrieve/pii/S1728869X21000472. Accessed 30 Nov 2022.

  93. Su L, Fu J, Sun S, Zhao G, Cheng W, Dou C, et al. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: a meta-analysis. PLOS ONE. 2019;14:e0210644. https://dx.plos.org/10.1371/journal.pone.0210644. Accessed 30 Nov 2022.

  94. Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12:330. http://www.nature.com/articles/s41467-020-20123-1. Accessed 30 Nov 2022.

  95. Ho SS, Dhaliwal SS, Hills AP, Pal S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health. 2012;12:704. https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-704. Accessed 30 Nov 2022.

  96. Bennie JA, Cocker KD, Pavey T, Stamatakis E, Biddle SJH, Ding D. Muscle strengthening, aerobic exercise, and obesity: a pooled analysis of 1.7 million US adults. Obesity. 2020;28:371–8. https://onlinelibrary.wiley.com/doi/10.1002/oby.22673. Accessed 30 Nov 2022.

  97. Liu Y, Lee D-C, Li Y, Zhu W, Zhang R, Sui X, et al. Associations of resistance exercise with cardiovascular disease morbidity and mortality. Med Sci Sports Exerc. 2019;51:499–508. http://www.ncbi.nlm.nih.gov/pubmed/30376511. Accessed 30 Nov 2022.

  98. Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, Bales CW, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physio. 2012;113:1831–7. http://www.ncbi.nlm.nih.gov/pubmed/23019316. Accessed 30 Nov 2022.

  99. Krzysztofik M, Wilk M, Wojdała G, Gołaś A. Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int J Environ Res Public Health. 2019;16. http://www.ncbi.nlm.nih.gov/pubmed/31817252. Accessed 30 Nov 2022.

  100. Gibson AA, Sainsbury A. Strategies to improve adherence to dietary weight loss interventions in research and real-world settings. Behav Sci. 2017;7. http://www.ncbi.nlm.nih.gov/pubmed/28696389. Accessed 30 Nov 2022.

  101. Estruch R, Ros E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev Endocr Metab Disord. 2020;21:315–27. https://link.springer.com/10.1007/s11154-020-09579-0. Accessed 30 Nov 2022.

  102. •• Nani A, Murtaza B, Khan AS, Khan NA, Hichami A. Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: molecular mechanisms. Molecules. 2021;26. http://www.ncbi.nlm.nih.gov/pubmed/33673390. Accessed 30 Nov 2022. A review on the biochemical mechanisms by which the Mediterranean Diet can prevent reactive species damage that drives metabolic damage in obesity.

  103. Park Y-M, Steck SE, Fung TT, Zhang J, Hazlett LJ, Han K, et al. Mediterranean diet and mortality risk in metabolically healthy obese and metabolically unhealthy obese phenotypes. Int J Obes. 2016;40:1541–9. http://www.nature.com/articles/ijo2016114. Accessed 30 Nov 2022.

  104. Rodríguez-García E, Ruiz-Nava J, Santamaria-Fernandez S, Fernández-Garcia JC, Candela AV, Yahyaoui R, et al. Implication of the Mediterranean diet and physical exercise on the lipid profile based on 1H-NMR spectroscopy of metabolically healthy obese women (MHO). Atherosclerosis. 2017;263:e223. https://linkinghub.elsevier.com/retrieve/pii/S0021915017309760. Accessed 30 Nov 2022.

  105. Tang D, Xiao X, Chen L, Kangzhu Y, Deng W, Basang undefined, et al. Association of dietary patterns with obesity and metabolically healthy obesity phenotype in Chinese population: a cross-sectional analysis of China multi-ethnic cohort study. Br J Nutr. 2022;1–11. http://www.ncbi.nlm.nih.gov/pubmed/35000632. Accessed 30 Nov 2022.

  106. Kim MJ, Park S, Yang HJ, Shin P-K, Hur HJ, Park S-J, et al. Alleviation of dyslipidemia via a traditional balanced Korean diet represented by a low glycemic and low cholesterol diet in obese women in a randomized controlled trial. Nutrients. 2022;14. http://www.ncbi.nlm.nih.gov/pubmed/35057420. Accessed 30 Nov 2022.

  107. Shin P-K, Park S-J, Kim MS, Kwon DY, Kim MJ, Kim K, et al. A Traditional Korean diet with a low dietary inflammatory index increases anti-inflammatory IL-10 and decreases pro-inflammatory NF-κB in a small dietary intervention study. Nutrients. 2020;12. http://www.ncbi.nlm.nih.gov/pubmed/32824387. Accessed 30 Nov 2022.

  108. Gabriel AS, Ninomiya K, Uneyama H. The role of the Japanese traditional diet in healthy and sustainable dietary patterns around the world. Nutrients. 2018;10. http://www.ncbi.nlm.nih.gov/pubmed/29401650. Accessed 30 Nov 2022.

  109. •• Imai T, Miyamoto K, Sezaki A, Kawase F, Shirai Y, Abe C, et al. Traditional Japanese diet score - association with obesity, incidence of ischemic heart disease, and healthy life expectancy in a global comparative study. J Nutr Health Aging. 2019;23:717–24. http://www.ncbi.nlm.nih.gov/pubmed/31560029. Accessed 30 Nov 2022. Solid evidence that traditional diets in Asia can greatly benefit those ethnic groups for whom the Mediterranean Diet may be unpalatable or undesired.

  110. Tanisawa K, Ito T, Kawakami R, Usui C, Kawamura T, Suzuki K, et al. Association between dietary patterns and different metabolic phenotypes in Japanese adults: WASEDA’S health study. Front Nutr. 2022;9. https://www.frontiersin.org/articles/10.3389/fnut.2022.779967/full. Accessed 30 Nov 2022.

  111. Sugawara S, Kushida M, Iwagaki Y, Asano M, Yamamoto K, Tomata Y, et al. The 1975 type Japanese diet improves lipid metabolic parameters in younger adults: a randomized controlled trial. J Oleo Sci. 2018;67:599–607. https://www.jstage.jst.go.jp/article/jos/67/5/67_ess17259/_article. Accessed 30 Nov 2022.

  112. Poland D of PG and MD Poznań University of Medical Sciences, Poland I of HN and D Poznań University of Life Science, Duś-Żuchowska M, Bajerska J, Krzyżanowska P, Chmurzyńska A, et al. The Central European diet as an alternative to the Mediterranean diet in atherosclerosis prevention in postmenopausal obese women with a high risk of metabolic syndrome - a randomized nutrition-al trial. Acta Sci Pol Technol Aliment. 2018;17(4):399–407. http://www.ncbi.nlm.nih.gov/pubmed/30558396. Accessed 30 Nov 2022.

  113. Seidelmann SB, Claggett B, Cheng S, Henglin M, Shah A, Steffen LM, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health. 2018;3:e419–28. https://linkinghub.elsevier.com/retrieve/pii/S246826671830135X. Accessed 30 Nov 2022.

  114. Sartorius K, Sartorius B, Madiba TE, Stefan C. Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. BMJ Open. 2018;8:e018449. http://www.ncbi.nlm.nih.gov/pubmed/29439068. Accessed 30 Nov 2022.

  115. Landry MJ, Crimarco A, Perelman D, Durand LR, Petlura C, Aronica L, et al. Adherence to ketogenic and mediterranean study diets in a crossover trial: the Keto-Med Randomized Trial. Nutrients. 2021;13. http://www.ncbi.nlm.nih.gov/pubmed/33802709. Accessed 30 Nov 2022.

  116. Hooper L, Abdelhamid A, Moore HJ, Douthwaite W, Skeaff CM, Summerbell CD. Effect of reducing total fat intake on body weight: systematic review and meta-analysis of randomised controlled trials and cohort studies. BMJ. 2012;345:e7666. http://www.ncbi.nlm.nih.gov/pubmed/23220130. Accessed 30 Nov 2022.

  117. Fenton TR, Fenton CJ. Paleo diet still lacks evidence. Am J Clin Nutr. 2016;104:844. http://www.ncbi.nlm.nih.gov/pubmed/27587607. Accessed 30 Nov 2022.

  118. Manheimer EW, Zuuren EJ van, Fedorowicz Z, Pijl H. Paleolithic nutrition for metabolic syndrome: systematic review and meta-analysis. Am J Clin Nutr. 2015;102:922–32. http://www.ncbi.nlm.nih.gov/pubmed/26269362. Accessed 30 Nov 2022.

  119. Persynaki A, Karras S, Pichard C. Unraveling the metabolic health benefits of fasting related to religious beliefs: a narrative review. Nutrition. 2017;35:14–20. http://www.ncbi.nlm.nih.gov/pubmed/28241983. Accessed 30 Nov 2022.

  120. Fernando HA, Zibellini J, Harris RA, Seimon RV, Sainsbury A. Effect of Ramadan fasting on weight and body composition in healthy non-athlete adults: a systematic review and meta-analysis. Nutrients. 2019;11. http://www.ncbi.nlm.nih.gov/pubmed/30813495. Accessed 30 Nov 2022.

  121. Karras SN, Koufakis T, Adamidou L, Dimakopoulos G, Karalazou P, Thisiadou K, et al. Effects of Christian orthodox fasting versus time-restricted eating on plasma irisin concentrations among overweight metabolically healthy individuals. Nutrients. 2021;13. http://www.ncbi.nlm.nih.gov/pubmed/33806150. Accessed 1 Dec 2022.

  122. Arhire LI, Mihalache L, Covasa M. Irisin: a hope in understanding and managing obesity and metabolic syndrome. Front Endocrinol. 2019;10. https://www.frontiersin.org/article/10.3389/fendo.2019.00524/full. Accessed 1 Dec 2022.

  123. Johnson D. Therapeutic fasting in morbid obesity. Arch Intern Med. 1977;137:1381. http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.1977.03630220029009. Accessed 1 Dec 2022.

  124. Nam S. The effects of religious attendance and obesity on health by race/ethnicity. Osong Public Heal Res Perspect. 2013;4(2):81–8.

    Article  Google Scholar 

  125. Bharmal NH, McCarthy WJ, Gadgil MD, Kandula NR, Kanaya AM. The association of religious affiliation with overweight/obesity among South Asians: the Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study. J Relig Heal. 2018;57(1):33–46.

    Article  Google Scholar 

  126. Regmi P, Heilbronn LK. Time-restricted eating: benefits, mechanisms, and challenges in translation. iScience. 2020;23:101161. http://www.ncbi.nlm.nih.gov/pubmed/32480126. Accessed 1 Dec 2022.

  127. Peeke PM, Greenway FL, Billes SK, Zhang D, Fujioka K. Effect of time restricted eating on body weight and fasting glucose in participants with obesity: results of a randomized, controlled, virtual clinical trial. Nutr Diabetes. 2021;11:6. http://www.nature.com/articles/s41387-021-00149-0. Accessed 1 Dec 2022.

  128. Lowe DA, Wu N, Rohdin-Bibby L, Moore AH, Kelly N, Liu YE, et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity. JAMA Intern Med. 2020;180:1491. https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2771095. Accessed 1 Dec 2022.

  129. Sarwar R, Pierce N, Koppe S. Obesity and nonalcoholic fatty liver disease: current perspectives. Diabetes Metab Syndr Obes Targets Ther. 2018;11:533–42.

    Article  CAS  Google Scholar 

  130. Barrea L, Muscogiuri G, Pugliese G, Alteriis G de, Colao A, Savastano S. Metabolically healthy obesity (MHO) vs. metabolically unhealthy obesity (MUO) phenotypes in PCOS: association with endocrine-metabolic profile, adherence to the Mediterranean diet, and body composition. Nutrients. 2021;13. http://www.ncbi.nlm.nih.gov/pubmed/34836180. Accessed 1 Dec 2022.

  131. • Sandby K, Geiker NRW, Dalamaga M, Grønbæk H, Magkos F. Efficacy of dietary manipulations for depleting intrahepatic triglyceride content: implications for the management of non-alcoholic fatty liver disease. Curr Obes Rep. 2021;10(2):125–33. An analysis of NAFLD treatments which are important in preventing MUO transition.

  132. Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. Bmc Endocr Disord. 2022;22(1):63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Brandt A, Hernández-Arriaga A, Kehm R, Sánchez V, Jin CJ, Nier A, et al. Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci Rep-uk. 2019;9(1):6668.

    Article  Google Scholar 

  134. Valk ES van der, Savas M, Rossum EFC van. Stress and obesity: are there more susceptible individuals? Curr Obes Rep. 2018;7:193–203. http://www.ncbi.nlm.nih.gov/pubmed/29663153. Accessed 1 Dec 2022.

  135. Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes Targets Ther. 2019;12:191–8. http://www.ncbi.nlm.nih.gov/pubmed/30774404. Accessed 1 Dec 2022.

  136. Labruna G, Pasanisi F, Nardelli C, Caso R, Vitale DF, Contaldo F, et al. High leptin/adiponectin ratio and serum triglycerides are associated with an “at-risk” phenotype in young severely obese patients. Obesity. 2011;19:1492–6. http://www.ncbi.nlm.nih.gov/pubmed/21183936. Accessed 1 Dec 2022.

  137. Nie X, Ma X, Xu Y, Shen Y, Wang Y, Bao Y. Characteristics of serum thyroid hormones in different metabolic phenotypes of obesity. Front Endocrinol. 2020;11. https://www.frontiersin.org/article/10.3389/fendo.2020.00068/full. Accessed 1 Dec 2022.

  138. Fui MNT, Dupuis P, Grossmann M. Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian J Androl. 2014;16:223–31. http://www.ncbi.nlm.nih.gov/pubmed/24407187. Accessed 1 Dec 2022.

  139. Savas M, Wester VL, Visser JA, Kleinendorst L, Zwaag BVD, Haelst MMV, et al. Extensive phenotyping for potential weight-inducing factors in an outpatient population with obesity. Obes Facts. 2019;12:369–84.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ko HS, Kim CJ, Ryu WS. Overweight and effect of hormone replacement therapy on lipid profiles in postmenopausal women. Korean J Intern Med. 2005;20:33–9. http://www.ncbi.nlm.nih.gov/pubmed/15906951. Accessed 1 Dec 2022.

  141. Loves S, Jong J de, Sorge A van, Telting D, Tack CJ, Hermus A, et al. Somatic and psychological effects of low-dose aromatase inhibition in men with obesity-related hypogonadotropic hypotestosteronemia. Eur J Endocrinol. 2013;169:705–14. https://eje.bioscientifica.com/view/journals/eje/169/5/705.xml. Accessed 1 Dec 2022.

  142. Grave RD, Sartirana M, Calugi S. Personalized cognitive-behavioural therapy for obesity (CBT-OB): theory, strategies and procedures. BioPsychoSocial Med. 2020;14:5. https://bpsmedicine.biomedcentral.com/articles/10.1186/s13030-020-00177-9. Accessed 1 Dec 2022.

  143. Moraes A dos S, Padovani R da C, Teixeira CVLS, Cuesta MGS, Gil S dos S, Paula B de, et al. Cognitive behavioral approach to treat obesity: a randomized clinical trial. Front Nutr. 2021;8. https://www.frontiersin.org/articles/10.3389/fnut.2021.611217/full. Accessed 1 Dec 2022.

  144. Madura JA, Dibaise JK. Quick fix or long-term cure? Pros and cons of bariatric surgery. F1000 Med Rep. 2012;4:19. http://www.ncbi.nlm.nih.gov/pubmed/23091563. Accessed 1 Dec 2022.

  145. Abbas M, Cumella L, Zhang Y, Choi J, Vemulapalli P, Melvin WS, et al. Outcomes of laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass in patients older than 60. Obes Surg. 2015;25:2251–6. http://www.ncbi.nlm.nih.gov/pubmed/26001882. Accessed 1 Dec 2022.

  146. Maciejewski ML, Arterburn DE, Scoyoc LV, Smith VA, Yancy WS, Weidenbacher HJ, et al. Bariatric surgery and long-term durability of weight loss. JAMA Surg. 2016;151:1046. http://archsurg.jamanetwork.com/article.aspx?doi=10.1001/jamasurg.2016.2317. Accessed 1 Dec 2022.

  147. Soong T-C, Lee M-H, Lee W-J, Almalki OM, Chen J-C, Wu C-C, et al. Long-term efficacy of bariatric surgery for the treatment of super-obesity: comparison of SG, RYGB, and OAGB. Obes Surg. 2021;31:3391–9. http://www.ncbi.nlm.nih.gov/pubmed/33993423. Accessed 1 Dec 2022.

  148. • Argyrakopoulou G, Konstantinidou SK, Dalamaga M, Kokkinos A. Nutritional deficiencies before and after bariatric surgery: prevention and treatment. Curr Nutr Rep. 2022;11(2):95–101. A detailed treatise on the diverse nutritional defects bariatric surgery patients face.

  149. Krzizek E-C, Brix JM, Stöckl A, Parzer V, Ludvik B. Prevalence of micronutrient deficiency after bariatric surgery. Obes Facts. 2021;14(2):197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lupoli R, Lembo E, Saldalamacchia G, Avola CK, Angrisani L, Capaldo B. Bariatric surgery and long-term nutritional issues. World J Diabetes. 2017;8(11):464–74.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lavie CJ, Laddu D, Arena R, Ortega FB, Alpert MA, Kushner RF. Healthy weight and obesity prevention: JACC health promotion series. J Am Coll Cardiol. 2018;72:1506–31. http://www.ncbi.nlm.nih.gov/pubmed/30236314. Accessed 1 Dec 2022.

  152. Verhaegen AA, Gaal LFV. Drugs that affect body weight, body fat distribution, and metabolism. In: Feingold K, editor. Endotext. MDText.com; 2019. https://www.ncbi.nlm.nih.gov/books/NBK537590/. Accessed 1 Dec 2022.

  153. Kumar RB, Aronne LJ. Review of multimodal therapies for obesity treatment: Including dietary, counseling strategies, and pharmacologic interventions. Tech Gastrointest Endosc. 2017;19(1):12–7.

    Article  Google Scholar 

  154. •• Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The fight against obesity escalates: new drugs on the horizon and metabolic implications. Curr Obes Rep. 2020;9(2):136–49. An excellent source for detailed information on approved drugs as well as those currently being tested in human clinical trials.

  155. Seifarth C, Schehler B, Schneider HJ. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp Clin Endocrinol DiabetesOff. 2013;121:27–31. http://www.ncbi.nlm.nih.gov/pubmed/23147210. Accessed 1 Dec 2022. German Society of Endocrinology [and] German Diabetes Association.

  156. Tuccinardi D, Farr OM, Upadhyay J, Oussaada SM, Mathew H, Paschou SA, et al. Lorcaserin treatment decreases body weight and reduces cardiometabolic risk factors in obese adults: a six-month, randomized, placebo-controlled, double-blind clinical trial. Diabetes Obes Metab. 2019;21(6):1487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sharretts J, Galescu O, Gomatam S, Andraca-Carrera E, Hampp C, Yanoff L. Cancer risk associated with lorcaserin – the FDA’s review of the CAMELLIA-TIMI 61 Trial. New Engl J Med. 2020;383(11):1000–2.

    Article  CAS  PubMed  Google Scholar 

  158. Jordan J, Astrup A, Engeli S, Narkiewicz K, Day WW, Finer N. Cardiovascular effects of phentermine and topiramate: a new drug combination for the treatment of obesity. J Hypertens. 2014;32:1178–88. http://www.ncbi.nlm.nih.gov/pubmed/24621808. Accessed 1 Dec 2022.

  159. Ritchey ME, Harding A, Hunter S, Peterson C, Sager PT, Kowey PR, et al. Cardiovascular safety during and after use of phentermine and topiramate. J Clin Endocrinol Metab. 2019;104:513–22. https://academic.oup.com/jcem/article/104/2/513/5104461. Accessed 1 Dec 2022.

  160. Gadde KM, Parker CB, Maner LG, Wagner HR, Logue EJ, Drezner MK, et al. Bupropion for weight loss: an investigation of efficacy and tolerability in overweight and obese women. Obes Res. 2001;9(9):544–51.

    Article  CAS  PubMed  Google Scholar 

  161. Tek C. Naltrexone HCI/bupropion HCI for chronic weight management in obese adults: patient selection and perspectives. Patient Prefer Adher. 2016;10:751–9.

    Google Scholar 

  162. Kelly AS, Bensignor MO, Hsia DS, Shoemaker AH, Shih W, Peterson C, et al. Phentermine/topiramate for the treatment of adolescent obesity. Nejm Évid. 2022;1(6).

  163. Liu T-T, Liu X-T, Chen Q-X, Shi Y. Lipase inhibitors for obesity: a review. Biomed Pharmacother. 2020;128:110314.

    Article  CAS  PubMed  Google Scholar 

  164. Kwon Y-J, Kwon GE, Lee HS, Choi MH, Lee J-W. The effect of orlistat on sterol metabolism in obese patients. Front Endocrinol. 2022;13:824269.

    Article  Google Scholar 

  165. Grunvald E, Shah R, Hernaez R, Chandar AK, Pickett-Blakely O, Teigen LM, et al. AGA clinical practice guideline on pharmacological interventions for adults with obesity. Gastroenterology. 2022;163(5):1198–225.

    Article  CAS  PubMed  Google Scholar 

  166. Kahan S, Fujioka K. Obesity pharmacotherapy in patients with type 2 diabetes. Diabetes Spectr Publ Am Diabetes Assoc. 2017;30(4):250–7.

    Article  Google Scholar 

  167. Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, et al. Tirzepatide once weekly for the treatment of obesity. New Engl J Med. 2022. http://www.nejm.org/doi/10.1056/NEJMoa2206038. Accessed 1 Dec 2022.

  168. Madsbad S. The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications. Diabetes Obes Metab. 2014;16(1):9–21.

    Article  CAS  PubMed  Google Scholar 

  169. Mahapatra MK, Karuppasamy M, Sahoo BM. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord. 2022;23(3):521–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Funch D, Mortimer K, Ziyadeh NJ, Seeger JD, Zhou L, Ng E, et al. Risk of thyroid cancer associated with use of liraglutide and other antidiabetic drugs in a US commercially insured population. Diabetes Metab Syndr Obes Targets Ther. 2021;14:2619–29.

    Article  Google Scholar 

  171. Ryan DH. Next generation antiobesity medications: setmelanotide, semaglutide, tirzepatide and bimagrumab: what do they mean for clinical practice? J Obes Metab Syndr. 2021;30(3):196–208.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Malin SK, Kashyap SR. Effects of metformin on weight loss. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):323–9.

    Article  CAS  PubMed  Google Scholar 

  173. Mehta A, Marso SP, Neeland IJ. Liraglutide for weight management: a critical review of the evidence. Obes Sci Pract. 2017;3(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  174. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines Formedical Care of Patients with Obesity. Endocr Pract. 2016;22:1–203.

    Article  PubMed  Google Scholar 

  175. Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity and weight loss. Curr Obes Reports. 2019;8(2):156–64.

    Article  Google Scholar 

  176. Caixàs A, Albert L, Capel I, Rigla M. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date. Drug Des Dev Ther. 2014;8:1419–27.

    Article  Google Scholar 

  177. le Roux CW, Fils-Aimé N, Camacho F, Gould E, Barakat M. The relationship between early weight loss and weight loss maintenance with naltrexone-bupropion therapy. Eclinicalmedicine. 2022;49:101436.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Onakpoya IJ, Lee JJ, Mahtani KR, Aronson JK, Heneghan CJ. Naltrexone–bupropion (Mysimba) in management of obesity: a systematic review and meta-analysis of unpublished clinical study reports. Brit J Clin Pharmacol. 2020;86(4):646–67.

    Article  CAS  Google Scholar 

  179. Qi X. Review of the clinical effect of orlistat. Iop Conf Ser Mater Sci Eng. 2018;301(1):012063.

    Article  Google Scholar 

  180. Lei X, Ruan J, Lai C, Sun Z, Yang X. Efficacy and safety of phentermine/topiramate in adults with overweight or obesity: a systematic review and meta-analysis. Obesity. 2021;29(6):985–94.

    Article  CAS  PubMed  Google Scholar 

  181. Johnson DB, Quick J. Topiramate and phentermine. StatPearls. https://pubmed.ncbi.nlm.nih.gov/29489234/. Accessed 1 Dec 2022.

  182. Thompson J, Heaton P, Kelton C. PSY3 efficacy of phentermine monotherapy, topiramate monotherapy, and phentermine/topiramate combination therapy on weight loss: a network meta-analysis of randomized controlled trial data. Value Health. 2014;17(3):A224.

    Article  Google Scholar 

  183. Gao X, Hua X, Wang X, Xu W, Zhang Y, Shi C, et al. Efficacy and safety of semaglutide on weight loss in obese or overweight patients without diabetes: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2022;13:935823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan J. Mathis.

Ethics declarations

Conflict of Interest

No conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This manuscript does not have any animal or human studies performed by the authors and reports only published literature results. However, each included study was checked for adherence to ethics in experimentation, including informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathis, B.J., Tanaka, K. & Hiramatsu, Y. Metabolically Healthy Obesity: Are Interventions Useful?. Curr Obes Rep 12, 36–60 (2023). https://doi.org/10.1007/s13679-023-00494-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-023-00494-4

Keywords

Navigation