Skip to main content

Advertisement

Log in

Vitamin D and Obesity: Current Evidence and Controversies

  • Metabolism (M Dalamaga, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Evidence from observational studies suggests that obesity is associated with low vitamin D. As both obesity and hypovitaminosis D present an alarmingly increased prevalence worldwide, there is an intense research interest to clarify all aspects of this association. This review summarizes current evidence from meta-analyses investigating vitamin D status in obesity, including the effects of weight loss and bariatric surgery on vitamin D status and the outcomes of vitamin D supplementation on body weight. We also discuss potential pathophysiologic mechanisms and important controversies.

Recent Findings

Data from meta-analyses consistently support an inverse association of vitamin D levels with body weight. However, the impact of weight loss on improving vitamin D status is small, while studies on the supplementation with vitamin D after bariatric surgery have shown conflicting results regarding vitamin D status. Moreover, interventional studies do not support a beneficial effect of vitamin D supplementation on body weight. These findings warrant a cautious interpretation due to important methodological limitations and confounding factors, such as high heterogeneity of studies, variable methods of determination of vitamin D and definition of deficiency/insufficiency, use of various adiposity measures and definitions of obesity, and inadequate adjustment for confounding variables influencing vitamin D levels. The underlying pathogenetic mechanisms associating low vitamin D in obesity include volumetric dilution, sequestration into adipose tissue, limited sunlight exposure, and decreased vitamin D synthesis in the adipose tissue and liver. Experimental studies have demonstrated that low vitamin D may be implicated in adipose tissue differentiation and growth leading to obesity either by regulation of gene expression or through modulation of parathyroid hormone, calcium, and leptin.

Summary

Obesity is associated with low vitamin D status but weight loss has little effect on improving this; vitamin D supplementation is also not associated with weight loss. Evidence regarding vitamin D status after bariatric surgery is contradicting. The link between vitamin D and obesity remains controversial due to important limitations and confounding of studies. More research is needed to clarify the complex interplay between vitamin D and adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

BIA:

bioelectrical impedance analysis

BMI:

body mass index

CLIA:

chemiluminescence immunoassay

CPBA:

competitive protein-binding assays

CVD:

cardiovascular disease

DBP:

vitamin D binding protein

DEXA:

dual-energy X-ray absorptiometry

DM2:

type 2 diabetes mellitus

ELISA:

enzyme-linked immunosorbent assay

FM:

fat mass

HPLC:

high-performance liquid chromatography

LC-MS/MS:

liquid chromatography tandem mass spectrometry

MR:

Mendelian randomization

mRNA:

messenger RNA

NHANES:

National Health and Nutrition Examination Survey

OR:

odds ratio

PFM:

percentage of fat mass

PCOS:

polycystic ovary syndrome

PTH:

parathyroid hormone

RCT:

randomized controlled trial

RIA:

radioimmunoassay

RR:

relative risk

SNPs:

single nucleotide polymorphisms

UVB:

type B ultraviolet

VAT:

visceral adipose tissue

VDR:

vitamin D receptor

WC:

waist circumference

WHI:

Women’s Health Initiative

WHR:

waist-hip ratio

1,25(OH)2D:

1,25-dihydroxyvitamin D

25(OH)D:

25-hydroxyvitamin D

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98. https://doi.org/10.1038/s41574-019-0176-8.

    Article  PubMed  Google Scholar 

  2. WHO – Obesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight Accessed 5 Jan 2021.

  3. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, no 360. Hyattsville, MD: National Center for Health Statistics. 2020

  4. Via M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012;2012:103472–8. https://doi.org/10.5402/2012/103472.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. https://doi.org/10.1056/NEJMra070553.

    Article  CAS  PubMed  Google Scholar 

  6. Arabi A, El Rassi R, El-Hajj Fuleihan G. Hypovitaminosis D in developing countries-prevalence, risk factors and outcomes. Nat Rev Endocrinol. 2010;6:550–61. https://doi.org/10.1038/nrendo.2010.146.

    Article  CAS  PubMed  Google Scholar 

  7. Rojas-Rivera J, De La Piedra C, Ramos A, Ortiz A, Egido J. The expanding spectrum of biological actions of vitamin D. Nephrol Dial Transplant. 2010;25:2850–65. https://doi.org/10.1093/ndt/gfq313.

    Article  CAS  PubMed  Google Scholar 

  8. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18:153–65. https://doi.org/10.1007/s11154-017-9424-1.

    Article  CAS  PubMed  Google Scholar 

  9. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30. https://doi.org/10.1210/jc.2011-0385.

    Article  CAS  PubMed  Google Scholar 

  10. Giustina A, Adler RA, Binkley N, Bollerslev J, Bouillon R, Dawson-Hughes B, et al. Consensus statement from 2nd International Conference on Controversies in Vitamin D. Rev Endocr Metab Disord. 2020;2:89–116. https://doi.org/10.1007/s11154-019-09532-w.

    Article  CAS  Google Scholar 

  11. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin D. Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors. Washington (DC): National Academies Press (US); 2011.

  12. Yetley EA. Assessing the vitamin D status of the US population. Am J Clin Nutr. 2008;88:558S–64S. https://doi.org/10.1093/ajcn/88.2.558S.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng S, Massaro JM, Fox CS, Larson MG, Keyes MJ, McCabe EL, et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes. 2010;59:242–8. https://doi.org/10.2337/db09-1011.

    Article  CAS  PubMed  Google Scholar 

  14. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5:2502–21. https://doi.org/10.3390/nu5072502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park JE, Pichiah PBT, Cha YS. Vitamin D and Metabolic Diseases: Growing Roles of Vitamin D. J Obes Metab Syndr. 2018;27:223–32. https://doi.org/10.7570/jomes.2018.27.4.223.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prasad P, Kochhar A. Interplay of vitamin D and metabolic syndrome: A review. Diabetes Metab Syndr. 2016;10:105–12. https://doi.org/10.1016/j.dsx.2015.02.014.

    Article  PubMed  Google Scholar 

  17. Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177–89. https://doi.org/10.1016/j.jsbmb.2016.09.017.

    Article  CAS  PubMed  Google Scholar 

  18. Cashman KD, Vitamin D. Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif Tissue Int. 2020;106:14–29. https://doi.org/10.1007/s00223-019-00559-4.

    Article  CAS  PubMed  Google Scholar 

  19. Pourshahidi LK. Vitamin D and obesity: current perspectives and future directions. Proc Nutr Soc. 2015;74:115–24. https://doi.org/10.1017/S0029665114001578.

    Article  CAS  PubMed  Google Scholar 

  20. Abbas MA. Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol. 2017;165:369–81. https://doi.org/10.1016/j.jsbmb.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  21. Ruiz-Ojeda FJ, Anguita-Ruiz A, Leis R, Aguilera CM. Genetic Factors and Molecular Mechanisms of Vitamin D and Obesity Relationship. Ann Nutr Metab. 2018;73:89–99. https://doi.org/10.1159/000490669.

    Article  CAS  PubMed  Google Scholar 

  22. Migliaccio S, Di Nisio A, Mele C, Scappaticcio L, Savastano S, Colao A. Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group. Obesity and hypovitaminosis D: causality or casualty? Int J Obes Suppl. 2019;9:20–31. https://doi.org/10.1038/s41367-019-0010-8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saneei P, Salehi-Abargouei A, Esmaillzadeh A. Serum 25-hydroxy vitamin D levels in relation to body mass index: a systematic review and meta-analysis. Obes Rev. 2013;14:393–404. https://doi.org/10.1111/obr.12016.

    Article  CAS  PubMed  Google Scholar 

  24. •• Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10:e1001383. https://doi.org/10.1371/journal.pmed.1001383In this large meta-analysis, the causality and direction of the relationship between vitamin D and BMI was explored, by using genetic markers in a bi-directional Mendelian randomization analysis of a large Caucasian population of over 42,000 participants. The study showed that obesity may lead to low vitamin D levels, while any reverse effect is probably small.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shanmugalingam T, Crawley D, Bosco C, Melvin J, Rohrmann S, Chowdhury S, et al. Obesity and cancer: the role of vitamin D. BMC Cancer. 2014;14:712. https://doi.org/10.1186/1471-2407-14-712.

    Article  PubMed  PubMed Central  Google Scholar 

  26. •• Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015;16:341–9. https://doi.org/10.1111/obr.12239This large meta-analysis of 23 studies and more than 65,000 participants demonstrated that the prevalence of vitamin D deficiency is significantly higher in overweight and obesity compared to normal body weight, independently from age, latitude and developmental status of the country.

    Article  CAS  PubMed  Google Scholar 

  27. Rafiq S, Jeppesen PB. Body Mass Index, Vitamin D, and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients. 2018;10:1182. https://doi.org/10.3390/nu10091182.

    Article  CAS  PubMed Central  Google Scholar 

  28. Golzarand M, Hollis BW, Mirmiran P, Wagner CL, Shab-Bidar S. Vitamin D supplementation and body fat mass: a systematic review and meta-analysis. Eur J Clin Nutr. 2018;72:1345–57. https://doi.org/10.1038/s41430-018-0132-z.

    Article  CAS  PubMed  Google Scholar 

  29. Bacopoulou F, Kolias E, Efthymiou V, Antonopoulos CN, Charmandari E. Vitamin D predictors in polycystic ovary syndrome: a meta-analysis. Eur J Clin Investig. 2017;47:746–55. https://doi.org/10.1111/eci.12800.

    Article  CAS  Google Scholar 

  30. • Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am J Clin Nutr. 2016;104:1151–9. https://doi.org/10.3945/ajcn.116.136879This meta-analysis evaluated the effect of weight loss after caloric restriction and/or exercise on vitamin D levels compared to weight maintenance, under similar supplemental vitamin D intake and showed that weight loss is associated with a small but significant increase in serum 25(OH)D levels.

    Article  CAS  PubMed  Google Scholar 

  31. Pannu PK, Zhao Y, Soares MJ. Reductions in body weight and percent fat mass increase the vitamin D status of obese subjects: a systematic review and metaregression analysis. Nutr Res. 2016;36:201–13. https://doi.org/10.1016/j.nutres.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  32. Liu C, Wu D, Zhang JF, Xu D, Xu WF, Chen Y, et al. Changes in Bone Metabolism in Morbidly Obese Patients After Bariatric Surgery: A Meta-Analysis. Obes Surg. 2016;26:91–7. https://doi.org/10.1007/s11695-015-1724-5.

    Article  PubMed  Google Scholar 

  33. • Kalani A, Bami H, Tiboni M, Jaeschke R, Adachi JD, Lau AN. The effect of bariatric surgery on serum 25-OH vitamin D levels: a systematic review and meta-analysis. Obes Sci Pract. 2017;3:319–32. https://doi.org/10.1002/osp4.113This meta-analysis assessed the effect of bariatric surgery on 25(OH)D by comparing adults with obesity undergone bariatric surgery to non-surgical controls and showed no significant difference in 25(OH)D change compared to baseline 12 and 24 months post surgery between cases and controls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Z, Zhou X, Fu W. Vitamin D supplementation for the prevention of vitamin D deficiency after bariatric surgery: a systematic review and meta-analysis. Eur J Clin Nutr. 2018;72:1061–70. https://doi.org/10.1038/s41430-017-0059-9.

    Article  CAS  PubMed  Google Scholar 

  35. Tian Z, Fan XT, Li SZ, Zhai T, Dong J. Changes in Bone Metabolism After Sleeve Gastrectomy Versus Gastric Bypass: a Meta-Analysis. Obes Surg. 2020;30:77–86. https://doi.org/10.1007/s11695-019-04119-5.

    Article  PubMed  Google Scholar 

  36. Pathak K, Soares MJ, Calton EK, Zhao Y, Hallett J. Vitamin D supplementation and body weight status: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2014;15:528–37. https://doi.org/10.1111/obr.12162.

    Article  CAS  PubMed  Google Scholar 

  37. • Chandler PD, Wang L, Zhang X, Sesso HD, Moorthy MV, Obi O, et al. Effect of vitamin D supplementation alone or with calcium on adiposity measures: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2015;73:577–93. https://doi.org/10.1093/nutrit/nuv012This is a large meta-analysis of more than 42,000 adults that demonstrated that supplementation with vitamin D with or without calcium for more than 12 months, had no effect on adiposity measures (BMI, body weight and fat mass).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Manousopoulou A, Al-Daghri NM, Garbis SD, Chrousos GP. Vitamin D and cardiovascular risk among adults with obesity: a systematic review and meta-analysis. Eur J Clin Investig. 2015;45:1113–26. https://doi.org/10.1111/eci.12510.

    Article  CAS  Google Scholar 

  39. Is PS, Vitamin D. Supplementation Useful for Weight Loss Programs? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina (Kaunas). 2019;55:368. https://doi.org/10.3390/medicina55070368.

    Article  Google Scholar 

  40. Emadzadeh M, Rashidmayvan M, Sahebi R, Sadeghi R, Ferns GA, Ghayour-Mobarhan M. The effect of vitamin D fortified products on anthropometric indices: A systematic review and meta-analysis. Complement Ther Clin Pract. 2020;41:101242. https://doi.org/10.1016/j.ctcp.2020.101242.

    Article  PubMed  Google Scholar 

  41. Duan L, Han L, Liu Q, Zhao Y, Wang L, Wang Y. Effects of Vitamin D Supplementation on General and Central Obesity: Results from 20 Randomized Controlled Trials Involving Apparently Healthy Populations. Ann Nutr Metab. 2020;76:153–64. https://doi.org/10.1159/000507418.

    Article  CAS  PubMed  Google Scholar 

  42. Arterburn DE, Courcoulas AP. Bariatric surgery for obesity and metabolic conditions in adults. BMJ. 2014;349:g3961. https://doi.org/10.1136/bmj.g3961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gletsu-Miller N, Wright BN. Mineral malnutrition following bariatric surgery. Adv Nutr. 2013;4:506–17. https://doi.org/10.3945/an.113.004341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Looker AC, Pfeiffer CM, Lacher DA, Schleicher RL, Picciano MF, Yetley EA. Serum 25-hydroxyvitamin D status of the US population: 1988-1994 compared with 2000-2004. Am J Clin Nutr. 2008;88:1519–27. https://doi.org/10.3945/ajcn.2008.26182.

    Article  CAS  PubMed  Google Scholar 

  45. Zerwekh JE. Blood biomarkers of vitamin D status. Am J Clin Nutr. 2008;87:1087S–91S. https://doi.org/10.1093/ajcn/87.4.1087S.

    Article  CAS  PubMed  Google Scholar 

  46. Heaney RP, Armas LA, Shary JR, Bell NH, Binkley N, Hollis BW. 25-Hydroxylation of vitamin D3: relation to circulating vitamin D3 under various input conditions. Am J Clin Nutr. 2008;87:1738–42. https://doi.org/10.1093/ajcn/87.6.1738.

    Article  CAS  PubMed  Google Scholar 

  47. Farrell CJ, Herrmann M. Determination of vitamin D and its metabolites. Best Pract Res Clin Endocrinol Metab. 2013;27:675–88. https://doi.org/10.1016/j.beem.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  48. Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86:50–60. https://doi.org/10.4065/mcp.2010.0567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19:73–8. https://doi.org/10.1016/j.annepidem.2007.12.001.

    Article  PubMed  Google Scholar 

  50. Black LJ, Anderson D, Clarke MW, Ponsonby AL, Lucas RM. Ausimmune Investigator Group. Analytical Bias in the Measurement of Serum 25-Hydroxyvitamin D Concentrations Impairs Assessment of Vitamin D Status in Clinical and Research Settings. PLoS One. 2015;10:e0135478. https://doi.org/10.1371/journal.pone.0135478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dalamaga M, Muscogiuri G, Paganitsa G, Parvouleskou G, Syriou V, Karagkoynis P, et al. Adherence to the Mediterranean diet is an independent predictor of circulating vitamin D levels in normal weight and non-smoker adults: an observational cross-sectional study. Int J Food Sci Nutr. 2021:1–13. https://doi.org/10.1080/09637486.2021.1878488.

  52. Altieri B, Cavalier E, Bhattoa HP, Pérez-López FR, López-Baena MT, Pérez-Roncero GR, et al. Vitamin D testing: advantages and limits of the current assays. Eur J Clin Nutr. 2020;74:231–47. https://doi.org/10.1038/s41430-019-0553-3.

    Article  PubMed  Google Scholar 

  53. Luttmann-Gibson H, Mora S, Camargo CA, Cook NR, Demler OV, Ghoshal A, et al. Serum 25-hydroxyvitamin D in the VITamin D and OmegA-3 TriaL (VITAL): Clinical and demographic characteristics associated with baseline and change with randomized vitamin D treatment. Contemp Clin Trials. 2019;87:105854. https://doi.org/10.1016/j.cct.2019.105854.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ambikairajah A, Walsh E, Tabatabaei-Jafari H, Cherbuin N. Fat mass changes during menopause: a metaanalysis. Am J Obstet Gynecol. 2019;221:393–409.e50. https://doi.org/10.1016/j.ajog.2019.04.023.

    Article  PubMed  Google Scholar 

  55. Goossens GH, Jocken JWE, Blaak EE. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol. 2021;17:47–66. https://doi.org/10.1038/s41574-020-00431-8.

    Article  PubMed  Google Scholar 

  56. Sollid ST, Hutchinson MY, Fuskevåg OM, Joakimsen RM, Jorde R. Large Individual Differences in Serum 25-Hydroxyvitamin D Response to Vitamin D Supplementation: Effects of Genetic Factors, Body Mass Index, and Baseline Concentration. Results from a Randomized Controlled Trial. Horm Metab Res. 2016;48:27–34. https://doi.org/10.1055/s-0034-1398617.

    Article  CAS  PubMed  Google Scholar 

  57. de Oliveira LF, de Azevedo LG, da Mota Santana J, de Sales LPC, Pereira-Santos M. Obesity and overweight decreases the effect of vitamin D supplementation in adults: systematic review and meta-analysis of randomized controlled trials. Rev Endocr Metab Disord. 2020;21:67–76. https://doi.org/10.1007/s11154-019-09527-7.

    Article  CAS  PubMed  Google Scholar 

  58. Bassatne A, Chakhtoura M, Saad R, Fuleihan GE. Vitamin D supplementation in obesity and during weight loss: A review of randomized controlled trials. Metabolism. 2019;92:193–205. https://doi.org/10.1016/j.metabol.2018.12.010.

    Article  CAS  PubMed  Google Scholar 

  59. O'Neill CM, Kazantzidis A, Ryan MJ, Barber N, Sempos CT, Durazo-Arvizu RA, et al. Seasonal Changes in Vitamin D-Effective UVB Availability in Europe and Associations with Population Serum 25-Hydroxyvitamin D. Nutrients. 2016;8:533. https://doi.org/10.3390/nu8090533.

    Article  CAS  PubMed Central  Google Scholar 

  60. Farrokhyar F, Tabasinejad R, Dao D, Peterson D, Ayeni OR, Hadioonzadeh R, et al. Prevalence of vitamin D inadequacy in athletes: a systematic-review and meta-analysis. Sports Med. 2015;45:365–78. https://doi.org/10.1007/s40279-014-0267-6.

    Article  PubMed  Google Scholar 

  61. Chouraqui JP, Turck D, Briend A, Darmaun D, Bocquet A, Feillet F, et al. Religious dietary rules and their potential nutritional and health consequences. Int J Epidemiol. 2020;dyaa182. https://doi.org/10.1093/ije/dyaa182

  62. Drewnowski A. Obesity, diets, and social inequalities. Nutr Rev. 2009;67:S36–9. https://doi.org/10.1111/j.1753-4887.2009.00157.x.

    Article  PubMed  Google Scholar 

  63. Lips P. Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol. 2010;121:297–300. https://doi.org/10.1016/j.jsbmb.2010.02.021.

    Article  CAS  PubMed  Google Scholar 

  64. Agarwal KS, Mughal MZ, Upadhyay P, Berry JL, Mawer EB, Puliyel JM. The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. Arch Dis Child. 2002;87:111–3. https://doi.org/10.1136/adc.87.2.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Prentice A. Vitamin D deficiency: a global perspective. Nutr Rev. 2008;66:S153–64. https://doi.org/10.1111/j.1753-4887.2008.00100.x.

    Article  PubMed  Google Scholar 

  66. Sepulveda-Villegas M, Elizondo-Montemayor L, Trevino V. Identification and analysis of 35 genes associated with vitamin D deficiency: A systematic review to identify genetic variants. J Steroid Biochem Mol Biol. 2020;196:105516. https://doi.org/10.1016/j.jsbmb.2019.105516.

    Article  CAS  PubMed  Google Scholar 

  67. Chakhtoura MT, Nakhoul NN, Shawwa K, Mantzoros C, El Hajj Fuleihan GA. Hypovitaminosis D in bariatric surgery: A systematic review of observational studies. Metabolism. 2016;65:574–85. https://doi.org/10.1016/j.metabol.2015.12.004.

    Article  CAS  PubMed  Google Scholar 

  68. Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring). 2013;21:S1–27. https://doi.org/10.1002/oby.20461.

    Article  CAS  Google Scholar 

  69. Lotito A, Teramoto M, Cheung M, Becker K, Sukumar D. Serum Parathyroid Hormone Responses to Vitamin D Supplementation in Overweight/Obese Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients. 2017;9:241. https://doi.org/10.3390/nu9030241.

    Article  CAS  PubMed Central  Google Scholar 

  70. Salazar DA, Ferreira MJS, Neves JS, Pedro JMP, Guerreiro VA, E Silva Viana S, et al. Variable Thresholds of Vitamin D Plasma Levels to Suppress PTH: the Effect of Weight and Bariatric Surgery. Obes Surg. 2020;30:1551–9. https://doi.org/10.1007/s11695-019-04351-z.

    Article  PubMed  Google Scholar 

  71. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254–60. https://doi.org/10.1210/jcem-54-2-254.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81(3):555–63. https://doi.org/10.1093/ajcn/81.3.555.

    Article  CAS  PubMed  Google Scholar 

  73. St-Pierre J, Lemieux I, Vohl MC, Perron P, Tremblay G, Després JP, et al. Contribution of abdominal obesity and hypertriglyceridemia to impaired fasting glucose and coronary artery disease. Am J Cardiol. 2002;90(1):15–8. https://doi.org/10.1016/s0002-9149(02)02378-0.

    Article  CAS  PubMed  Google Scholar 

  74. Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med. 2020;7:22. https://doi.org/10.3389/fcvm.2020.00022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caron-Jobin M, Morisset AS, Tremblay A, Huot C, Légaré D, Tchernof A. Elevated serum 25(OH)D concentrations, vitamin D, and calcium intakes are associated with reduced adipocyte size in women. Obesity (Silver Spring). 2011;19:1335–41. https://doi.org/10.1038/oby.2011.90.

    Article  CAS  Google Scholar 

  76. Rosenblum JL, Castro VM, Moore CE, Kaplan LM. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. Am J Clin Nutr. 2012;95:101–8. https://doi.org/10.3945/ajcn.111.019489.

    Article  CAS  PubMed  Google Scholar 

  77. Messina C, Albano D, Gitto S, Tofanelli L, Bazzocchi A, Ulivieri FM, et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg. 2020;10(8):1687–98. https://doi.org/10.21037/qims.2020.03.02.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48. https://doi.org/10.1038/ng.686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. •• Jiang X, Ge T, Chen CY. The causal role of circulating vitamin D concentrations in human complex traits and diseases: a large-scale Mendelian randomization study. Sci Rep. 2021;11(1):184. https://doi.org/10.1038/s41598-020-80655-wThis study is the first to explore the association between a large number of vitamin D associated SNPs with a wide range of human complex traits and diseases and showed limited evidence of the causal effects of vitamin D on obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vimaleswaran KS, Cavadino A, Berry DJ, Mangino M, Andrews P, Moore JH, et al. Interaction between allelic variations in vitamin D receptor and retinoid X receptor genes on metabolic traits. BMC Genet. 2014;15:37. https://doi.org/10.1186/1471-2156-15-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. • Chen X, Wang W, Wang Y, Han X, Gao L. Vitamin D Receptor Polymorphisms Associated with Susceptibility to Obesity: A Meta-Analysis. Med Sci Monit. 2019;25:8297–305. https://doi.org/10.12659/MSM.915678This meta-analysis explored the association between VDR polymorphisms and obesity and found no association. However, subgroup analysis highlighted that specific VDR alleles may have a potentially protective effect against obesity, while others may present risk factors for obesity in Asian, but not European subjects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Palaniswamy S, Gill D, De Silva NM, Lowry E, Jokelainen J, Karhu T, et al. Could vitamin D reduce obesity-associated inflammation? Observational and Mendelian randomization study. Am J Clin Nutr. 2020;111(5):1036–47. https://doi.org/10.1093/ajcn/nqaa056.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG. Vitamin D concentration, obesity, and risk of diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2(4):298–306. https://doi.org/10.1016/S2213-8587(13)70200-6.

    Article  CAS  PubMed  Google Scholar 

  84. Parsanathan R, Jain SK. Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Sci Rep. 2019;9:14784. https://doi.org/10.1038/s41598-019-51377-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lima RPA, Hayashi DN, Lima KQDF, Gomes NIG, Ribeiro MR, et al. The Role of Epigenetics in the Etiology of Obesity: A Review. J Clin Epigenet. 2017;3:41. https://doi.org/10.21767/2472-1158.100075.

    Article  Google Scholar 

  86. Kull M, Kallikorm R, Lember M. Body mass index determines sunbathing habits: implications on vitamin D levels. Intern Med J. 2009;39:256–8. https://doi.org/10.1111/j.1445-5994.2009.01900.x.

    Article  CAS  PubMed  Google Scholar 

  87. Florez H, Martinez R, Chacra W, Strickman-Stein N, Levis S. Outdoor exercise reduces the risk of hypovitaminosis D in the obese. J Steroid Biochem Mol Biol. 2007;103:679–81. https://doi.org/10.1016/j.jsbmb.2006.12.032.

    Article  CAS  PubMed  Google Scholar 

  88. Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr. 2016;103:1465–71. https://doi.org/10.3945/ajcn.115.120139.

    Article  CAS  PubMed  Google Scholar 

  89. Macdonald HM, Mavroeidi A, Aucott LA, Diffey BL, Fraser WD, Ormerod AD, et al. Skin color change in Caucasian postmenopausal women predicts summer-winter change in 25-hydroxyvitamin D: findings from the ANSAViD cohort study. J Clin Endocrinol Metab. 2011;96:1677–86. https://doi.org/10.1210/jc.2010-2032.

    Article  CAS  PubMed  Google Scholar 

  90. Matsuoka LY, Ide L, Wortsman J, MacLaughlin JA, Holick MF. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8. https://doi.org/10.1210/jcem-64-6-1165.

    Article  CAS  PubMed  Google Scholar 

  91. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–8. https://doi.org/10.1172/JCI112134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. https://doi.org/10.1093/ajcn/72.3.690This landmark study demonstrated that obesity-associated vitamin D insufficiency was likely due to decreased bioavailability of vitamin D from subcutaneous adipose tissue and dietary sources, because of its deposition in various body fat compartments.

    Article  CAS  PubMed  Google Scholar 

  93. Osmancevic A, Gillstedt M, Landin-Wilhelmsen K, Wennberg Larkö AM, Larkö O, Holick MF, et al. Size of the exposed body surface area, skin erythema and body mass index predict skin production of vitamin D. J Photochem Photobiol B. 2015;149:224–9. https://doi.org/10.1016/j.jphotobiol.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  94. Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, et al. Low vitamin D status and obesity: Role of nutritionist. Rev Endocr Metab Disord. 2017;18:215–25. https://doi.org/10.1007/s11154-017-9410-7.

    Article  CAS  PubMed  Google Scholar 

  95. Blum M, Dolnikowski G, Seyoum E, Harris SS, Booth SL, Peterson J, et al. Vitamin D(3) in fat tissue. Endocrine. 2008;33:90–4. https://doi.org/10.1007/s12020-008-9051-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walsh JS, Bowles S, Evans AL. Vitamin D in obesity. Curr Opin Endocrinol Diabetes Obes. 2017;24:389–94. https://doi.org/10.1097/MED.0000000000000371.

    Article  CAS  PubMed  Google Scholar 

  97. Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring). 2012;20:1444–8. https://doi.org/10.1038/oby.2011.404.

    Article  CAS  Google Scholar 

  98. Carrelli A, Bucovsky M, Horst R, Cremers S, Zhang C, Bessler M, et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J Bone Miner Res. 2017;32:237–42. https://doi.org/10.1002/jbmr.2979.

    Article  CAS  PubMed  Google Scholar 

  99. Wamberg L, Christiansen T, Paulsen SK, Fisker S, Rask P, Rejnmark L, et al. Expression of vitamin D-metabolizing enzymes in human adipose tissue -- the effect of obesity and diet-induced weight loss. Int J Obes. 2013;37:651–7. https://doi.org/10.1038/ijo.2012.112.

    Article  CAS  Google Scholar 

  100. Roizen JD, Long C, Casella A, O'Lear L, Caplan I, Lai M, et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J Bone Miner Res. 2019;34:1068–73. https://doi.org/10.1002/jbmr.3686.

    Article  CAS  PubMed  Google Scholar 

  101. Elkhwanky MS, Kummu O, Piltonen TT, Laru J, Morin-Papunen L, Mutikainen M, et al. Obesity Represses CYP2R1, the Vitamin D 25-Hydroxylase, in the Liver and Extrahepatic Tissues. JBMR Plus. 2020;4:e10397. https://doi.org/10.1002/jbm4.10397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3. https://doi.org/10.1172/JCI111971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89:1196–9. https://doi.org/10.1210/jc.2003-031398.

    Article  CAS  PubMed  Google Scholar 

  104. Konradsen S, Ag H, Lindberg F, Hexeberg S, Jorde R. Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur J Nutr. 2008;47:87–91. https://doi.org/10.1007/s00394-008-0700-4.

    Article  CAS  PubMed  Google Scholar 

  105. Lagunova Z, Porojnicu AC, Vieth R, Lindberg FA, Hexeberg S, Moan J. Serum 25-hydroxyvitamin D is a predictor of serum 1,25-dihydroxyvitamin D in overweight and obese patients. J Nutr. 2011;141:112–7. https://doi.org/10.3945/jn.109.119495.

    Article  CAS  PubMed  Google Scholar 

  106. Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signalling in adipose tissue. Br J Nutr. 2012;108:1915–23. https://doi.org/10.1017/S0007114512003285.

    Article  CAS  PubMed  Google Scholar 

  107. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290:E916–24. https://doi.org/10.1152/ajpendo.00410.2005.

    Article  CAS  PubMed  Google Scholar 

  108. Rayalam S, Della-Fera MA, Ambati S, Yang JY, Park HJ, Baile CA. Enhanced effects of 1,25(OH)(2)D(3) plus genistein on adipogenesis and apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring). 2008;16:539–46. https://doi.org/10.1038/oby.2007.90.

    Article  CAS  Google Scholar 

  109. Earthman CP, Beckman LM, Masodkar K, Sibley SD. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes. 2012;36:387–96. https://doi.org/10.1038/ijo.2011.119.

    Article  CAS  Google Scholar 

  110. Mutt SJ, Hyppönen E, Saarnio J, Järvelin MR, Herzig KH. Vitamin D and adipose tissue - more than storage. Front Physiol. 2014;5:228. https://doi.org/10.3389/fphys.2014.00228.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Querfeld U, Hoffmann MM, Klaus G, Eifinger F, Ackerschott M, Michalk D, et al. Antagonistic effects of vitamin D and parathyroid hormone on lipoprotein lipase in cultured adipocytes. J Am Soc Nephrol. 1999;10:2158–64.

    Article  CAS  PubMed  Google Scholar 

  112. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC. Regulation of adiposity by dietary calcium. FASEB J. 2000;14:1132–8.

    Article  CAS  PubMed  Google Scholar 

  113. Soares MJ, Murhadi LL, Kurpad AV, Chan She Ping-Delfos WL, Piers LS. Mechanistic roles for calcium and vitamin D in the regulation of body weight. Obes Rev. 2012;13:592–605. https://doi.org/10.1111/j.1467-789X.2012.00986.x.

    Article  CAS  PubMed  Google Scholar 

  114. Gonzalez JT, Rumbold PL, Stevenson EJ. Effect of calcium intake on fat oxidation in adults: a meta-analysis of randomized, controlled trials. Obes Rev. 2012;13:848–57. https://doi.org/10.1111/j.1467-789X.2012.01013.x.

    Article  CAS  PubMed  Google Scholar 

  115. Karampela I, Christodoulatos GS, Dalamaga M. The Role of Adipose Tissue and Adipokines in Sepsis: Inflammatory and Metabolic Considerations, and the Obesity Paradox. Curr Obes Rep. 2019;8:434–57. https://doi.org/10.1007/s13679-019-00360-2.

    Article  PubMed  Google Scholar 

  116. Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18:29–42. https://doi.org/10.1016/j.cmet.2013.05.010.

    Article  CAS  PubMed  Google Scholar 

  117. Kong J, Chen Y, Zhu G, Zhao Q, Li YC. 1,25-Dihydroxyvitamin D3 upregulates leptin expression in mouse adipose tissue. J Endocrinol. 2013;216:265–71. https://doi.org/10.1530/JOE-12-0344.

    Article  CAS  PubMed  Google Scholar 

  118. Menendez C, Lage M, Peino R, Baldelli R, Concheiro P, Diéguez C, et al. Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J Endocrinol. 2001;170:425–31. https://doi.org/10.1677/joe.0.1700425.

    Article  CAS  PubMed  Google Scholar 

  119. Hajimohammadi M, Shab-Bidar S, Neyestani TR. Vitamin D and serum leptin: a systematic review and meta-analysis of observational studies and randomized controlled trials. Eur J Clin Nutr. 2017;71:1144–53. https://doi.org/10.1038/ejcn.2016.245.

    Article  CAS  PubMed  Google Scholar 

  120. Mousa A, Naderpoor N, Wilson K, Plebanski M, de Courten MPJ, Scragg R, et al. Vitamin D supplementation increases adipokine concentrations in overweight or obese adults. Eur J Nutr. 2020;59:195–204. https://doi.org/10.1007/s00394-019-01899-5.

    Article  CAS  PubMed  Google Scholar 

  121. Dinca M, Serban MC, Sahebkar A, Mikhailidis DP, Toth PP, Martin SS, et al. Does vitamin D supplementation alter plasma adipokines concentrations? A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;107:360–71. https://doi.org/10.1016/j.phrs.2016.03.035.

    Article  CAS  PubMed  Google Scholar 

  122. Maetani M, Maskarinec G, Franke AA, Cooney RV. Association of leptin, 25-hydroxyvitamin D, and parathyroid hormone in women. Nutr Cancer. 2009;61:225–31. https://doi.org/10.1080/01635580802455149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Karampela.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karampela, I., Sakelliou, A., Vallianou, N. et al. Vitamin D and Obesity: Current Evidence and Controversies. Curr Obes Rep 10, 162–180 (2021). https://doi.org/10.1007/s13679-021-00433-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-021-00433-1

Keywords

Navigation