Skip to main content

Advertisement

Log in

Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function—Mechanisms and Possible Therapeutic or Preventive Measures: an Update

  • Metabolism (M. Dalamaga, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Weight gain and body fat redistribution are common side effects of many widely used drugs. We summarize recent literature on prevalence data and mechanisms associated with drug-induced body fat changes and mechanisms to prevent or treat metabolic side effects.

Recent Findings

The highest prevalence of metabolic complications is seen with antipsychotics and antiretroviral drugs used in the treatment of HIV and may, at least partly, be responsible for the increased risk for co-morbid diseases such as diabetes, steatosis of the liver, and cardiovascular disease. The pathogenetic mechanisms leading to weight gain from antipsychotics are increasingly known and help to unravel the complex interaction that exists between psychopathology and metabolic complications. Although the classic lipodystrophy mainly occurred with older HIV drugs, also with the newer HIV treatment, weight gain seems to be a major side effect.

Summary

Early detection of the metabolic consequences of drugs can lead to an early diagnosis of the complications and their treatment. Different medications, including the newer antidiabetics, are being studied in the therapy of drug-induced obesity. Future research should focus on identifying individuals at risk for metabolic side effects and on early markers to identify individuals with side effects so that timely treatment of metabolic complications can be initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Domecq JP, Prutsky G, Leppin A, Sonbol MB, Altayar O, Undavalli C, et al. Clinical review: drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(2):363–70. https://doi.org/10.1210/jc.2014-3421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verhaegen AA, Van Gaal LF. Drug-induced obesity and its metabolic consequences: a review with a focus on mechanisms and possible therapeutic options. J Endocrinol Investig. 2017;40(11):1165–74. https://doi.org/10.1007/s40618-017-0719-6.

    Article  CAS  Google Scholar 

  3. Van Gaal L, Scheen A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care. 2015;38(6):1161–72. https://doi.org/10.2337/dc14-1630.

    Article  PubMed  Google Scholar 

  4. Russell-Jones D, Khan R. Insulin-associated weight gain in diabetes--causes, effects and coping strategies. Diabetes Obes Metab. 2007;9(6):799–812. https://doi.org/10.1111/j.1463-1326.2006.00686.x.

    Article  CAS  PubMed  Google Scholar 

  5. Aleman-Gonzalez-Duhart D, Tamay-Cach F, Alvarez-Almazan S, Mendieta-Wejebe JE. Current advances in the biochemical and physiological aspects of the treatment of type 2 diabetes mellitus with thiazolidinediones. PPAR Res. 2016;2016:7614270–10. https://doi.org/10.1155/2016/7614270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pontiroli AE, Miele L, Morabito A. Increase of body weight during the first year of intensive insulin treatment in type 2 diabetes: systematic review and meta-analysis. Diabetes Obes Metab. 2011;13(11):1008–19. https://doi.org/10.1111/j.1463-1326.2011.01433.x.

    Article  CAS  PubMed  Google Scholar 

  7. Makimattila S, Nikkila K, Yki-Jarvinen H. Causes of weight gain during insulin therapy with and without metformin in patients with type II diabetes mellitus. Diabetologia. 1999;42(4):406–12. https://doi.org/10.1007/s001250051172.

    Article  CAS  PubMed  Google Scholar 

  8. Medici V, McClave SA, Miller KR. Common medications which lead to unintended alterations in weight gain or organ lipotoxicity. Curr Gastroenterol Rep. 2016;18(1):2. https://doi.org/10.1007/s11894-015-0479-4.

    Article  PubMed  Google Scholar 

  9. Mills EP, Brown KPD, Smith JD, Vang PW, Trotta K. Treating nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a review of efficacy and safety. Ther Adv Endocrinol Metab. 2018;9(1):15–28. https://doi.org/10.1177/2042018817741852.

    Article  CAS  PubMed  Google Scholar 

  10. Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36–49. https://doi.org/10.1038/nrendo.2016.135.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. Int J Mol Sci. 2019;20(20):5055. https://doi.org/10.3390/ijms20205055.

  12. Brown E, Wilding JPH, Barber TM, Alam U, Cuthbertson DJ. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev. 2019;20(6):816–28. https://doi.org/10.1111/obr.12841.

    Article  CAS  PubMed  Google Scholar 

  13. Rajeev SP, Cuthbertson DJ, Wilding JP. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes Metab. 2016;18(2):125–34. https://doi.org/10.1111/dom.12578.

    Article  CAS  PubMed  Google Scholar 

  14. Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs. 2019;79(3):219–30. https://doi.org/10.1007/s40265-019-1057-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705. https://doi.org/10.1016/s0140-6736(06)69705-5.

    Article  CAS  PubMed  Google Scholar 

  16. Nauck MA, Meier JJ. Management of endocrine disease: are all GLP-1 agonist equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181:R211–34. https://doi.org/10.1530/eje-19-0566.

    Article  CAS  PubMed  Google Scholar 

  17. Capozzi ME, DiMarchi RD, Tschop MH, Finan B, Campbell JE. Targeting the Incretin/glucagon system with triagonists to treat diabetes. Endocr Rev. 2018;39(5):719–38. https://doi.org/10.1210/er.2018-00117.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bastin M, Andreelli F. Dual GIP-GLP1-receptor agonists in the treatment of type 2 diabetes: a short review on emerging data and therapeutic potential. Diabetes Metab Syndr Obes. 2019;12:1973–85. https://doi.org/10.2147/dmso.S191438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frias JP, Nauck MA, Van J, Benson C, Bray R, Cui X, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab. 2020. https://doi.org/10.1111/dom.13979.

  20. Compton MT, Daumit GL, Druss BG. Cigarette smoking and overweight/obesity among individuals with serious mental illnesses: a preventive perspective. Harv Rev Psychiatry. 2006;14(4):212–22. https://doi.org/10.1080/10673220600889256.

    Article  PubMed  Google Scholar 

  21. Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BW. Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatry. 2018;24:18–33. https://doi.org/10.1038/s41380-018-0017-5.

    Article  CAS  PubMed  Google Scholar 

  22. Menard C, Pfau ML, Hodes GE, Russo SJ. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology. 2017;42(1):62–80. https://doi.org/10.1038/npp.2016.90.

    Article  CAS  PubMed  Google Scholar 

  23. Zimmermann U, Kraus T, Himmerich H, Schuld A, Pollmacher T. Epidemiology, implications and mechanisms underlying drug-induced weight gain in psychiatric patients. J Psychiatr Res. 2003;37(3):193–220.

    Article  Google Scholar 

  24. Vandenberghe F, Gholam-Rezaee M, Saigi-Morgui N, Delacretaz A, Choong E, Solida-Tozzi A, et al. Importance of early weight changes to predict long-term weight gain during psychotropic drug treatment. J Clin Psychiatry. 2015;76(11):e1417–23. https://doi.org/10.4088/JCP.14m09358.

    Article  PubMed  Google Scholar 

  25. American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care. 2004;27(2):596–601. https://doi.org/10.2337/diacare.27.2.596.

  26. Alonso-Pedrero L, Bes-Rastrollo M, Marti A. Effects of antidepressant and antipsychotic use on weight gain: a systematic review. Obes Rev. 2019;20(12):1680–90. https://doi.org/10.1111/obr.12934.

    Article  PubMed  Google Scholar 

  27. Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry. 2010;71(10):1259–72. https://doi.org/10.4088/JCP.09r05346blu.

    Article  PubMed  Google Scholar 

  28. Laux G, Barthel B, Hajak G, Lemke M, Volz HP. Pooled analysis of four non-interventional studies: effectiveness and tolerability of the antidepressant agomelatine in daily practice. Adv Ther. 2017;34(4):895–914. https://doi.org/10.1007/s12325-017-0485-z.

    Article  CAS  PubMed  Google Scholar 

  29. Gadde KM, Xiong GL. Bupropion for weight reduction. Expert Rev Neurother. 2007;7(1):17–24. https://doi.org/10.1586/14737175.7.1.17.

    Article  CAS  PubMed  Google Scholar 

  30. Billes SK, Sinnayah P, Cowley MA. Naltrexone/bupropion for obesity: an investigational combination pharmacotherapy for weight loss. Pharmacol Res. 2014;84:1–11. https://doi.org/10.1016/j.phrs.2014.04.004.

    Article  CAS  PubMed  Google Scholar 

  31. Singh AK, Singh R. Pharmacotherapy in obesity: a systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev Clin Pharmacol. 2020;13(1):53–64. https://doi.org/10.1080/17512433.2020.1698291.

    Article  CAS  PubMed  Google Scholar 

  32. Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. Int J Bipolar Disord. 2016;4(1):27. https://doi.org/10.1186/s40345-016-0068-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sohn M, Moga DC, Blumenschein K, Talbert J. National trends in off-label use of atypical antipsychotics in children and adolescents in the United States. Medicine. 2016;95(23):e3784. https://doi.org/10.1097/md.0000000000003784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verdoux H, Tournier M, Begaud B. Antipsychotic prescribing trends: a review of pharmaco-epidemiological studies. Acta Psychiatr Scand. 2010;121(1):4–10. https://doi.org/10.1111/j.1600-0447.2009.01425.x.

    Article  CAS  PubMed  Google Scholar 

  35. Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976;261(5562):717–9.

    Article  CAS  Google Scholar 

  36. Allison DB, Casey DE. Antipsychotic-induced weight gain: a review of the literature. J Clin Psychiatry. 2001;62(Suppl 7):22–31.

    CAS  PubMed  Google Scholar 

  37. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC, et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry. 1999;156(11):1686–96. https://doi.org/10.1176/ajp.156.11.1686.

    Article  CAS  PubMed  Google Scholar 

  38. Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology. 2020;172:107704. https://doi.org/10.1016/j.neuropharm.2019.107704.

  39. Raben AT, Marshe VS, Chintoh A, Gorbovskaya I, Muller DJ, Hahn MK. The complex relationship between antipsychotic-induced weight gain and therapeutic benefits: a systematic review and implications for treatment. Front Neurosci. 2017;11:741. https://doi.org/10.3389/fnins.2017.00741.

    Article  PubMed  Google Scholar 

  40. Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders--a systematic review and meta-analysis. Schizophr Bull. 2013;39(2):306–18. https://doi.org/10.1093/schbul/sbr148.

    Article  PubMed  Google Scholar 

  41. De Hert M, Detraux J, van Winkel R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat Rev Endocrinol. 2011;8(2):114–26. https://doi.org/10.1038/nrendo.2011.156.

    Article  CAS  PubMed  Google Scholar 

  42. Teff KL, Rickels MR, Grudziak J, Fuller C, Nguyen HL, Rickels K. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease. Diabetes. 2013;62(9):3232–40. https://doi.org/10.2337/db13-0430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henderson DC, Cagliero E, Gray C, Nasrallah RA, Hayden DL, Schoenfeld DA, et al. Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: a five-year naturalistic study. Am J Psychiatry. 2000;157(6):975–81. https://doi.org/10.1176/appi.ajp.157.6.975.

    Article  CAS  PubMed  Google Scholar 

  44. Balf G, Stewart TD, Whitehead R, Baker RA. Metabolic adverse events in patients with mental illness treated with antipsychotics: a primary care perspective. Prim Care Companion J Clin Psychiatry. 2008;10(1):15–24.

    Article  Google Scholar 

  45. Orsolini L, Tomasetti C, Valchera A, Vecchiotti R, Matarazzo I, Vellante F, et al. An update of safety of clinically used atypical antipsychotics. Expert Opin Drug Saf. 2016;15(10):1329–47. https://doi.org/10.1080/14740338.2016.1201475.

    Article  CAS  PubMed  Google Scholar 

  46. Daumit GL, Goff DC, Meyer JM, Davis VG, Nasrallah HA, McEvoy JP, et al. Antipsychotic effects on estimated 10-year coronary heart disease risk in the CATIE schizophrenia study. Schizophr Res. 2008;105(1–3):175–87. https://doi.org/10.1016/j.schres.2008.07.006.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Singh R, Bansal Y, Medhi B, Kuhad A. Antipsychotics-induced metabolic alterations: recounting the mechanistic insights, therapeutic targets and pharmacological alternatives. Eur J Pharmacol. 2019;844:231–40. https://doi.org/10.1016/j.ejphar.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  48. Ballon JS, Pajvani U, Freyberg Z, Leibel RL, Lieberman JA. Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol Metab. 2014;25(11):593–600. https://doi.org/10.1016/j.tem.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  49. van der Zwaal EM, Merkestein M, Lam YK, Brans MA, Luijendijk MC, Bok LI, et al. The acute effects of olanzapine on ghrelin secretion, CCK sensitivity, meal size, locomotor activity and body temperature. Int J Obes. 2012;36(2):254–61. https://doi.org/10.1038/ijo.2011.97.

    Article  CAS  Google Scholar 

  50. Nemani K, Hosseini Ghomi R, McCormick B, Fan X. Schizophrenia and the gut-brain axis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;56:155–60. https://doi.org/10.1016/j.pnpbp.2014.08.018.

    Article  CAS  Google Scholar 

  51. Skonieczna-Zydecka K, Loniewski I, Misera A, Stachowska E, Maciejewska D, Marlicz W, et al. Second-generation antipsychotics and metabolism alterations: a systematic review of the role of the gut microbiome. Psychopharmacology. 2019;236(5):1491–512. https://doi.org/10.1007/s00213-018-5102-6.

    Article  CAS  PubMed  Google Scholar 

  52. Fonseka TM, Muller DJ, Kennedy SH. Inflammatory cytokines and antipsychotic-induced weight gain: review and clinical implications. Mol Neuropsychiatry. 2016;2(1):1–14. https://doi.org/10.1159/000441521.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vestri HS, Maianu L, Moellering DR, Garvey WT. Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology. 2007;32(4):765–72. https://doi.org/10.1038/sj.npp.1301142.

    Article  CAS  PubMed  Google Scholar 

  54. Holt RI, Peveler RC. Association between antipsychotic drugs and diabetes. Diabetes Obes Metab. 2006;8(2):125–35. https://doi.org/10.1111/j.1463-1326.2005.00495.x.

    Article  CAS  PubMed  Google Scholar 

  55. Dwyer DS, Donohoe D. Induction of hyperglycemia in mice with atypical antipsychotic drugs that inhibit glucose uptake. Pharmacol Biochem Behav. 2003;75(2):255–60.

    Article  CAS  Google Scholar 

  56. Gurusamy J, Gandhi S, Damodharan D, Ganesan V, Palaniappan M. Exercise, diet and educational interventions for metabolic syndrome in persons with schizophrenia: a systematic review. Asian J Psychiatr. 2018;36:73–85. https://doi.org/10.1016/j.ajp.2018.06.018.

    Article  PubMed  Google Scholar 

  57. Alvarez-Jimenez M, Hetrick SE, Gonzalez-Blanch C, Gleeson JF, McGorry PD. Non-pharmacological management of antipsychotic-induced weight gain: systematic review and meta-analysis of randomised controlled trials. Br J Psychiatry J Ment Sci. 2008;193(2):101–7. https://doi.org/10.1192/bjp.bp.107.042853.

    Article  Google Scholar 

  58. Mukundan A, Faulkner G, Cohn T, Remington G. Antipsychotic switching for people with schizophrenia who have neuroleptic-induced weight or metabolic problems. Cochrane Database Syst Rev. 2010;(12):Cd006629. https://doi.org/10.1002/14651858.CD006629.pub2.

  59. Gierisch JM, Nieuwsma JA, Bradford DW, Wilder CM, Mann-Wrobel MC, McBroom AJ et al. AHRQ comparative effectiveness reviews. Interventions To Improve Cardiovascular Risk Factors in People With Serious Mental Illness. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013.

  60. Mizuno Y, Suzuki T, Nakagawa A, Yoshida K, Mimura M, Fleischhacker WW, et al. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophr Bull. 2014;40(6):1385–403. https://doi.org/10.1093/schbul/sbu030.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maayan L, Vakhrusheva J, Correll CU. Effectiveness of medications used to attenuate antipsychotic-related weight gain and metabolic abnormalities: a systematic review and meta-analysis. Neuropsychopharmacology. 2010;35(7):1520–30. https://doi.org/10.1038/npp.2010.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hendrick V, Dasher R, Gitlin M, Parsi M. Minimizing weight gain for patients taking antipsychotic medications: the potential role for early use of metformin. Ann Clin Psychiatry. 2017;29(2):120–4.

    PubMed  Google Scholar 

  63. Hu Y, Young AJ, Ehli EA, Nowotny D, Davies PS, Droke EA, et al. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One. 2014;9(3):e93310. https://doi.org/10.1371/journal.pone.0093310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ebdrup BH, Knop FK, Ishoy PL, Rostrup E, Fagerlund B, Lublin H, et al. Glucagon-like peptide-1 analogs against antipsychotic-induced weight gain: potential physiological benefits. BMC Med. 2012;10:92. https://doi.org/10.1186/1741-7015-10-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Siskind D, Hahn M, Correll CU, Fink-Jensen A, Russell AW, Bak N, et al. Glucagon-like peptide-1 receptor agonists for antipsychotic-associated cardio-metabolic risk factors: a systematic review and individual participant data meta-analysis. Diabetes Obes Metab. 2019;21(2):293–302. https://doi.org/10.1111/dom.13522.

    Article  CAS  PubMed  Google Scholar 

  66. Lian J, Huang XF, Pai N, Deng C. Ameliorating antipsychotic-induced weight gain by betahistine: mechanisms and clinical implications. Pharmacol Res. 2016;106:51–63. https://doi.org/10.1016/j.phrs.2016.02.011.

    Article  CAS  PubMed  Google Scholar 

  67. Kang D, Jing Z, Li R, Hei G, Shao T, Li L, et al. Effect of Betahistine and metformin on antipsychotic-induced weight gain: an analysis of two clinical trials. Front Psych. 2018;9:620. https://doi.org/10.3389/fpsyt.2018.00620.

    Article  Google Scholar 

  68. Gross C, Blasey CM, Roe RL, Belanoff JK. Mifepristone reduces weight gain and improves metabolic abnormalities associated with risperidone treatment in normal men. Obesity (Silver Spring). 2010;18(12):2295–300. https://doi.org/10.1038/oby.2010.51.

    Article  CAS  Google Scholar 

  69. Rimessi A, Pavan C, Ioannidi E, Nigro F, Morganti C, Brugnoli A, et al. Protein kinase C beta: a new target therapy to prevent the long-term atypical antipsychotic-induced weight gain. Neuropsychopharmacology. 2017;42(7):1491–501. https://doi.org/10.1038/npp.2017.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Capuron L, Lasselin J, Castanon N. Role of adiposity-driven inflammation in depressive morbidity. Neuropsychopharmacology. 2017;42(1):115–28. https://doi.org/10.1038/npp.2016.123.

    Article  CAS  PubMed  Google Scholar 

  71. Muller N. COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Investig Drugs. 2010;11(1):31–42.

    PubMed  Google Scholar 

  72. Ben-Menachem E. Weight issues for people with epilepsy--a review. Epilepsia. 2007;48(Suppl 9):42–5. https://doi.org/10.1111/j.1528-1167.2007.01402.x.

    Article  PubMed  Google Scholar 

  73. Grootens KP, Meijer A, Hartong EG, Doornbos B, Bakker PR, Al Hadithy A, et al. Weight changes associated with antiepileptic mood stabilizers in the treatment of bipolar disorder. Eur J Clin Pharmacol. 2018;74(11):1485–9. https://doi.org/10.1007/s00228-018-2517-2.

    Article  CAS  PubMed  Google Scholar 

  74. Verrotti A, D'Egidio C, Mohn A, Coppola G, Chiarelli F. Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes Rev. 2011;12(5):e32–43. https://doi.org/10.1111/j.1467-789X.2010.00800.x.

    Article  CAS  PubMed  Google Scholar 

  75. Belcastro V, D'Egidio C, Striano P, Verrotti A. Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res. 2013;107(1–2):1–8. https://doi.org/10.1016/j.eplepsyres.2013.08.016.

    Article  CAS  PubMed  Google Scholar 

  76. Aycicek A, Iscan A. The effects of carbamazepine, valproic acid and phenobarbital on the oxidative and antioxidative balance in epileptic children. Eur Neurol. 2007;57(2):65–9. https://doi.org/10.1159/000098053.

    Article  CAS  PubMed  Google Scholar 

  77. Wong HY, Chu TS, Lai JC, Fung KP, Fok TF, Fujii T, et al. Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem. 2005;96(4):775–85. https://doi.org/10.1002/jcb.20555.

    Article  CAS  PubMed  Google Scholar 

  78. Farinelli E, Giampaoli D, Cenciarini A, Cercado E, Verrotti A. Valproic acid and nonalcoholic fatty liver disease: a possible association? World J Hepatol. 2015;7(9):1251–7. https://doi.org/10.4254/wjh.v7.i9.1251.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Swann AC. Major system toxicities and side effects of anticonvulsants. J Clin Psychiatry. 2001;62(Suppl 14):16–21.

    CAS  PubMed  Google Scholar 

  80. Antel J, Hebebrand J. Weight-reducing side effects of the antiepileptic agents topiramate and zonisamide. Handb Exp Pharmacol. 2012;209:433–66. https://doi.org/10.1007/978-3-642-24716-3_20.

    Article  CAS  Google Scholar 

  81. Smith SM, Meyer M, Trinkley KE. Phentermine/topiramate for the treatment of obesity. Ann Pharmacother. 2013;47(3):340–9. https://doi.org/10.1345/aph.1R501.

    Article  CAS  PubMed  Google Scholar 

  82. Sharma AM, Pischon T, Hardt S, Kunz I, Luft FC. Hypothesis: beta-adrenergic receptor blockers and weight gain: a systematic analysis. Hypertension. 2001;37(2):250–4.

    Article  CAS  Google Scholar 

  83. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369(9557):201–7. https://doi.org/10.1016/s0140-6736(07)60108-1.

    Article  CAS  PubMed  Google Scholar 

  84. Fonseca VA. Effects of beta-blockers on glucose and lipid metabolism. Curr Med Res Opin. 2010;26(3):615–29. https://doi.org/10.1185/03007990903533681.

    Article  CAS  PubMed  Google Scholar 

  85. Rice JB, White AG, Scarpati LM, Wan G, Nelson WW. Long-term systemic corticosteroid exposure: a systematic literature review. Clin Ther. 2017;39(11):2216–29. https://doi.org/10.1016/j.clinthera.2017.09.011.

    Article  CAS  PubMed  Google Scholar 

  86. Curtis JR, Westfall AO, Allison J, Bijlsma JW, Freeman A, George V, et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum. 2006;55(3):420–6. https://doi.org/10.1002/art.21984.

    Article  PubMed  Google Scholar 

  87. Han J, Nguyen J, Kim Y, Geng B, Romanowski G, Alejandro L, et al. Effect of inhaled corticosteroid use on weight (BMI) in pediatric patients with moderate-severe asthma. J Asthma. 2019;56(3):263–9. https://doi.org/10.1080/02770903.2018.1455853.

    Article  CAS  PubMed  Google Scholar 

  88. Andersen YMF, Egeberg A, Ban L, Gran S, Williams HC, Francis NA, et al. Association between topical corticosteroid use and type 2 diabetes in two European population-based adult cohorts. Diabetes Care. 2019;42(6):1095–103. https://doi.org/10.2337/dc18-2158.

    Article  CAS  PubMed  Google Scholar 

  89. Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, Wittmann G, et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB J. 2008;22(6):1672–83. https://doi.org/10.1096/fj.07-094144.

    Article  CAS  PubMed  Google Scholar 

  90. Larsen PJ, Jessop DS, Chowdrey HS, Lightman SL, Mikkelsen JD. Chronic administration of glucocorticoids directly upregulates prepro-neuropeptide Y and Y1-receptor mRNA levels in the arcuate nucleus of the rat. J Neuroendocrinol. 1994;6(2):153–9.

    Article  CAS  Google Scholar 

  91. Harfstrand A, Cintra A, Fuxe K, Aronsson M, Wikstrom AC, Okret S, et al. Regional differences in glucocorticoid receptor immunoreactivity among neuropeptide Y immunoreactive neurons of the rat brain. Acta Physiol Scand. 1989;135(1):3–9. https://doi.org/10.1111/j.1748-1716.1989.tb08544.x.

    Article  CAS  PubMed  Google Scholar 

  92. Soumano K, Desbiens S, Rabelo R, Bakopanos E, Camirand A, Silva JE. Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell line. Mol Cell Endocrinol. 2000;165(1–2):7–15.

    Article  CAS  Google Scholar 

  93. Bowles NP, Karatsoreos IN, Li X, Vemuri VK, Wood JA, Li Z, et al. A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc Natl Acad Sci U S A. 2015;112(1):285–90. https://doi.org/10.1073/pnas.1421420112.

    Article  CAS  PubMed  Google Scholar 

  94. Fardet L, Feve B. Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs. 2014;74(15):1731–45. https://doi.org/10.1007/s40265-014-0282-9.

    Article  CAS  PubMed  Google Scholar 

  95. Fardet L, Cabane J, Lebbe C, Morel P, Flahault A. Incidence and risk factors for corticosteroid-induced lipodystrophy: a prospective study. J Am Acad Dermatol. 2007;57(4):604–9. https://doi.org/10.1016/j.jaad.2007.04.018.

    Article  PubMed  Google Scholar 

  96. Dube S, Slama MQ, Basu A, Rizza RA, Basu R. Glucocorticoid excess increases hepatic 11beta-HSD-1 activity in humans: implications in steroid-induced diabetes. J Clin Endocrinol Metab. 2015;100(11):4155–62. https://doi.org/10.1210/jc.2015-2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wolf G. Glucocorticoids in adipocytes stimulate visceral obesity. Nutr Rev. 2002;60(5 Pt 1):148–51.

    PubMed  Google Scholar 

  98. Arrive E, Viard JP, Salanave B, Dollfus C, Matheron S, Reliquet V, et al. Metabolic risk factors in young adults infected with HIV since childhood compared with the general population. PLoS One. 2018;13(11):e0206745. https://doi.org/10.1371/journal.pone.0206745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mirza FS, Luthra P, Chirch L. Endocrinological aspects of HIV infection. J Endocrinol Investig. 2018;41(8):881–99. https://doi.org/10.1007/s40618-017-0812-x.

    Article  CAS  Google Scholar 

  100. Kumar S, Samaras K. The impact of weight gain during HIV treatment on risk of pre-diabetes, diabetes mellitus, cardiovascular disease, and mortality. Front Endocrinol (Lausanne). 2018;9:705. https://doi.org/10.3389/fendo.2018.00705.

    Article  Google Scholar 

  101. Koethe JR, Jenkins CA, Lau B, Shepherd BE, Justice AC, Tate JP, et al. Rising obesity prevalence and weight gain among adults starting antiretroviral therapy in the United States and Canada. AIDS Res Hum Retrovir. 2016;32(1):50–8. https://doi.org/10.1089/aid.2015.0147.

    Article  PubMed  Google Scholar 

  102. Guaraldi G, Stentarelli C, Zona S, Santoro A. HIV-associated lipodystrophy: impact of antiretroviral therapy. Drugs. 2013;73(13):1431–50. https://doi.org/10.1007/s40265-013-0108-1.

    Article  CAS  PubMed  Google Scholar 

  103. Feeney ER, Mallon PW. HIV and HAART-associated dyslipidemia. Open Cardiovasc Med J. 2011;5:49–63. https://doi.org/10.2174/1874192401105010049.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nansseu JR, Bigna JJ, Kaze AD, Noubiap JJ. Incidence and risk factors for prediabetes and diabetes mellitus among HIV-infected Adults on Antiretroviral Therapy: A Systematic Review and Meta-analysis. Epidimiology. 2018;29(3):431–41. https://doi.org/10.1097/ede.0000000000000815.

    Article  Google Scholar 

  105. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80. https://doi.org/10.1038/nature05487.

    Article  CAS  PubMed  Google Scholar 

  106. Sharma A, Hoover DR, Shi Q, Gustafson D, Plankey MW, Hershow RC, et al. Relationship between body mass index and mortality in HIV-infected HAART users in the women’s interagency HIV study. PLoS One. 2015;10(12):e0143740. https://doi.org/10.1371/journal.pone.0143740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Koethe JR, Jenkins CA, Shepherd BE, Stinnette SE, Sterling TR. An optimal body mass index range associated with improved immune reconstitution among HIV-infected adults initiating antiretroviral therapy. Clin Infect Dis. 2011;53(9):952–60. https://doi.org/10.1093/cid/cir606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Erlandson KM, Lake JE. Fat matters: understanding the role of adipose tissue in health in HIV infection. Curr HIV/AIDS Rep. 2016;13(1):20–30. https://doi.org/10.1007/s11904-016-0298-8.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Giralt M, Domingo P, Guallar JP, Rodriguez de la Concepcion ML, Alegre M, Domingo JC, et al. HIV-1 infection alters gene expression in adipose tissue, which contributes to HIV- 1/HAART-associated lipodystrophy. Antivir Ther. 2006;11(6):729–40.

    CAS  PubMed  Google Scholar 

  110. Hulgan T, Haubrich R, Riddler SA, Tebas P, Ritchie MD, McComsey GA, et al. European mitochondrial DNA haplogroups and metabolic changes during antiretroviral therapy in AIDS Clinical Trials Group Study A5142. AIDS (London, England). 2011;25(1):37–47. https://doi.org/10.1097/QAD.0b013e32833f9d02.

    Article  CAS  Google Scholar 

  111. Koczor CA, Lewis W. Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert Opin Drug Metab Toxicol. 2010;6(12):1493–504. https://doi.org/10.1517/17425255.2010.526602.

    Article  CAS  PubMed  Google Scholar 

  112. Caron-Debarle M, Lagathu C, Boccara F, Vigouroux C, Capeau J. HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med. 2010;16(5):218–29. https://doi.org/10.1016/j.molmed.2010.03.002.

    Article  CAS  PubMed  Google Scholar 

  113. Giralt M, Domingo P, Villarroya F. Adipose tissue biology and HIV-infection. Best Pract Res Clin Endocrinol Metab. 2011;25(3):487–99. https://doi.org/10.1016/j.beem.2010.12.001.

    Article  CAS  PubMed  Google Scholar 

  114. Flint OP, Noor MA, Hruz PW, Hylemon PB, Yarasheski K, Kotler DP, et al. The role of protease inhibitors in the pathogenesis of HIV-associated lipodystrophy: cellular mechanisms and clinical implications. Toxicol Pathol. 2009;37(1):65–77. https://doi.org/10.1177/0192623308327119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hruz PW. Molecular mechanisms for insulin resistance in treated HIV-infection. Best Pract Res Clin Endocrinol Metab. 2011;25(3):459–68. https://doi.org/10.1016/j.beem.2010.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martin A, Smith DE, Carr A, Ringland C, Amin J, Emery S, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX extension study. AIDS. 2004;18(7):1029–36.

    Article  CAS  Google Scholar 

  117. Norwood J, Turner M, Bofill C, Rebeiro P, Shepherd B, Bebawy S, et al. Brief report: weight gain in persons with HIV switched from efavirenz-based to integrase strand transfer inhibitor-based regimens. J Acquir Immune Defic Syndr. 2017;76(5):527–31. https://doi.org/10.1097/qai.0000000000001525.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rochira V, Guaraldi G. Growth hormone deficiency and human immunodeficiency virus. Best Pract Res Clin Endocrinol Metab. 2017;31(1):91–111. https://doi.org/10.1016/j.beem.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  119. Culha MG, Inkaya AC, Yildirim E, Unal S, Serefoglu EC. Glucagon like peptide-1 receptor agonists may ameliorate the metabolic adverse effect associated with antiretroviral therapy. Med Hypotheses. 2016;94:151–3. https://doi.org/10.1016/j.mehy.2016.07.016.

    Article  CAS  PubMed  Google Scholar 

  120. Andersen O, Haugaard SB, Holst JJ, Deacon CF, Iversen J, Andersen UB, et al. Enhanced glucagon-like peptide-1 (GLP-1) response to oral glucose in glucose-intolerant HIV-infected patients on antiretroviral therapy. HIV Med. 2005;6(2):91–8. https://doi.org/10.1111/j.1468-1293.2005.00270.x.

    Article  CAS  PubMed  Google Scholar 

  121. Amouyal C, Buyse M, Lucas-Martini L, Hirt D, Genser L, Torcivia A, et al. Sleeve gastrectomy in morbidly obese HIV patients: focus on anti-retroviral treatment absorption after surgery. Obes Surg. 2018;28(9):2886–93. https://doi.org/10.1007/s11695-018-3308-7.

    Article  PubMed  Google Scholar 

  122. Polyzos SA, Perakakis N, Mantzoros CS. Fatty liver in lipodystrophy: a review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metab Clin Exp. 2019;96:66–82. https://doi.org/10.1016/j.metabol.2019.05.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann A. Verhaegen.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verhaegen, A.A., Van Gaal, L.F. Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function—Mechanisms and Possible Therapeutic or Preventive Measures: an Update. Curr Obes Rep 10, 1–13 (2021). https://doi.org/10.1007/s13679-020-00419-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-020-00419-5

Keywords

Navigation