Skip to main content

Advertisement

Log in

Cognition, Brain Structure, and Brain Function in Individuals with Obesity and Related Disorders

  • Etiology of Obesity (M Rosenbaum, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obesity is one of the most serious public health concerns. Excess adipose tissue, particularly with a centralized distribution, is associated with cognitive decline. Indeed, obesity has been associated with a number of adverse changes in brain function and structure that can be detected by neuroimaging techniques. These obesity-associated changes in the brain are associated with cognitive dysfunction.

Recent Findings

While the pathways by which excess adipose tissue affects brain function are not fully understood, available evidence points towards insulin resistance, inflammation, and vascular dysfunction, as possible mechanisms responsible for the observed relations between obesity and cognitive impairment.

Summary

It appears that weight loss is related to better brain and cognitive outcomes and that cognitive impairment due to obesity may be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heitmann BL, Westerterp KR, Loos RJ, Sorensen TI, O’Dea K, McLean P, et al. Obesity: lessons from evolution and the environment. Obes Rev. 2012;13(10):910–22.

    CAS  PubMed  Google Scholar 

  2. Strasser B, Arvandi M, Pasha EP, Haley AP, Stanforth P, Tanaka H. Abdominal obesity is associated with arterial stiffness in middle-aged adults. Nutr Metab Cardiovasc Dis. 2015;25(5):495–502.

    CAS  PubMed  Google Scholar 

  3. Burton BT, Foster WR. Health implications of obesity: an NIH Consensus Development Conference. J Am Diet Assoc. 1985;85:1117–21.

    CAS  PubMed  Google Scholar 

  4. Haley AP, Oleson S, Pasha E, Birdsill A, Kaur S, Thompson J, et al. Phenotypic heterogeneity of obesity-related brain vulnerability: one-size interventions will not fit all. Ann N Y Acad Sci. 2018;1428:89–102.

    PubMed  Google Scholar 

  5. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12:e426–37.

    CAS  PubMed  Google Scholar 

  6. Stingl KT, Kullmann S, Ketterer C, Heni M, Haring HU, Fritsche A, et al. Neuronal correlates of reduced memory performance in overweight subjects. Neuroimage. 2012;60:362–9.

    PubMed  Google Scholar 

  7. Kaur S, Gonzales MM, Tarumi T, Villalpando A, Alkatan M, Pyron M, et al. Serum brain-derived neurotrophic factor mediates the relationship between abdominal adiposity and executive function in middle age. J Int Neuropsychol Soc. 2016;22:493–500.

    PubMed  Google Scholar 

  8. Smith E, Hay P, Campbell L, Trollor JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12:740–55.

    CAS  PubMed  Google Scholar 

  9. Kerwin DR, Gaussoin SA, Chlebowski RT, Kuller LH, Vitolins M, Coker LH, et al. Interaction between body mass index and central adiposity and risk of incident cognitive impairment and dementia: results from the Women’s Health Initiative Memory Study. J Am Geriatr Soc. 2011;59:107–12.

    PubMed  Google Scholar 

  10. Singh-Manoux A, Dugravot A, Shipley M, Brunner EJ, Elbaz A, Sabia S, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement. 2018;14:178–86.

    PubMed  PubMed Central  Google Scholar 

  11. Peters R, Peters J, Booth A, Anstey KJ. Trajectory of blood pressure, body mass index, cholesterol and incident dementia: systematic review. Br J Psychiatry. 2020;216(1):16–28.

    PubMed  Google Scholar 

  12. Heymsfield SB, Gallagher D, Mayer L, Beetsch J, Pietrobelli A. Scaling of human body composition to stature: new insights into body mass index. Am J Clin Nutr. 2007;86(1):82–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Herrmann MJ, Tesar AK, Beier J, Berg M, Warrings B. Grey matter alterations in obesity: a meta-analysis of whole-brain studies. Obes Rev. 2019;20:464–71.

    PubMed  Google Scholar 

  14. Debette S, Beiser A, Hoffmann U, Decarli C, O'Donnell CJ, Massaro JM, et al. Visceral fat is associated with lower brain volume in healthy middle-aged adults. Ann Neurol. 2010;68:136–44.

    PubMed  PubMed Central  Google Scholar 

  15. Hamer M, Batty GD. Association of body mass index and waist-to-hip ratio with brain structure: UK Biobank study. Neurology. 2019;92:e594–600.

    PubMed  Google Scholar 

  16. Dekkers IA, Jansen PR, Lamb HJ. Obesity, brain volume, and white matter microstructure at MRI: a cross-sectional UK Biobank study. Radiology. 2019;292:270.

    PubMed  Google Scholar 

  17. Shaw ME, Sachdev PS, Abhayaratna W, Anstey KJ, Cherbuin N. Body mass index is associated with cortical thinning with different patterns in mid- and late-life. Int J Obes (2005). 2018;42:455–61.

    CAS  Google Scholar 

  18. Medic N, Ziauddeen H, Ersche KD, Farooqi IS, Bullmore ET, Nathan PJ, et al. Increased body mass index is associated with specific regional alterations in brain structure. Int J Obes (2005). 2016;40(7):1177–82.

    CAS  Google Scholar 

  19. Kaur S, Gonzales MM, Strasser B, Pasha E, McNeely J, Tanaka H, et al. Central adiposity and cortical thickness in midlife. Psychosom Med. 2015;77:671–8.

    CAS  PubMed  Google Scholar 

  20. Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK, et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63–70.

    PubMed  PubMed Central  Google Scholar 

  21. Syan SK, Owens MM, Goodman B, Epstein LH, Meyre D, Sweet LH, et al. Deficits in executive function and suppression of default mode network in obesity. Neuroimage Clin. 2019;24:102015.

    PubMed  PubMed Central  Google Scholar 

  22. Beach TG, Walker R, McGeer EG. Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia. 1989;2(6):420–36.

    CAS  PubMed  Google Scholar 

  23. Kullmann S, Schweizer F, Veit R, Fritsche A, Preissl H. Compromised white matter integrity in obesity. Obes Rev. 2015;16:273–81.

    CAS  PubMed  Google Scholar 

  24. Papageorgiou I, Astrakas LG, Xydis V, Alexiou GA, Bargiotas P, Tzarouchi L, et al. Abnormalities of brain neural circuits related to obesity: a diffusion tensor imaging study. Magn Reson Imaging. 2017;37:116–21.

    PubMed  Google Scholar 

  25. Pasha EP, Birdsill AC, Oleson S, Haley AP, Tanaka H. Physical activity mitigates adverse effect of metabolic syndrome on vessels and brain. Brain Imaging Behav. 2018;12:1658–68.

    PubMed  PubMed Central  Google Scholar 

  26. Samara A, Murphy T, Strain J, Rutlin J, Sun P, Neyman O, et al. Neuroinflammation and white matter alterations in obesity assessed by diffusion basis spectrum imaging. Front Hum Neurosci. 2019;13:464.

    PubMed  Google Scholar 

  27. Alkan E, Taporoski TP, Sterr A, von Schantz M, Vallada H, Krieger JE, et al. Metabolic syndrome alters relationships between cardiometabolic variables, cognition and white matter hyperintensity load. Sci Rep. 2019;9:4356.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim KW, Seo H, Kwak MS, Kim D. Visceral obesity is associated with white matter hyperintensity and lacunar infarct. Int J Obes (2005). 2017;41(5):683–8.

    CAS  Google Scholar 

  29. Lampe L, Zhang R, Beyer F, Huhn S, Kharabian Masouleh S, Preusser S, et al. Visceral obesity relates to deep white matter hyperintensities via inflammation. Ann Neurol. 2019;85(2):194–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nam KW, Kwon H, Kwon HM, Park JH, Jeong HY, Kim SH, et al. Abdominal fatness and cerebral white matter hyperintensity. J Neurol Sci. 2019;404:52–7.

    PubMed  Google Scholar 

  31. Nam KW, Kwon HM, Jeong HY, Park JH, Kwon H, Jeong SM. Obesity without metabolic disorder and silent brain infarcts in aneurologically healthy population. Int J Obes (2005). 2020;44:362–7.

    Google Scholar 

  32. Zhao WQ, Chen H, Quon MJ, Alkon DL. Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol. 2004;490:71–81.

    CAS  PubMed  Google Scholar 

  33. Tarumi T, Gonzales MM, Fallow B, Nualnim N, Lee J, Tanaka H, et al. Aerobic fitness and cognitive function in midlife: an association mediated by plasma insulin. Metab Brain Dis. 2013;28:727–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol. 2004;3:169–78.

    CAS  PubMed  Google Scholar 

  35. Malinow R. AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc B. 2003;358:707–14.

    CAS  Google Scholar 

  36. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.

    CAS  PubMed  Google Scholar 

  37. Haley AP, Gonzales MM, Tarumi T, Miles SC, Goudarzi K, Tanaka H. Elevated cerebral glutamate and myo-inositol levels in cognitively normal middle-aged adults with metabolic syndrome. Metab Brain Dis. 2010;25:397–405.

    CAS  PubMed  Google Scholar 

  38. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008;18:1085–8.

    PubMed  PubMed Central  Google Scholar 

  39. Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H, et al. Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia. 2007;50:711–9.

    CAS  PubMed  Google Scholar 

  40. Ekblad LL, Rinne JO, Puukka P, Laine H, Ahtiluoto S, Sulkava R, et al. Insulin resistance predicts cognitive decline: an 11-year follow-up of a nationally representative adult population sample. Diabetes Care. 2017;40:751–8.

    PubMed  Google Scholar 

  41. Muniyappa R, Iantorno M, Quon MJ. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin N Am. 2008;37:685–711 ix-x.

    CAS  Google Scholar 

  42. Fu Z, Wu J, Nesil T, Li MD, Aylor KW, Liu Z. Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am J Physiol Endocrinol Metab. 2017;312:E89–97.

    PubMed  Google Scholar 

  43. Curb JD, Rodriguez BL, Abbott RD, Petrovitch H, Ross GW, Masaki KH, et al. Longitudinal association of vascular and Alzheimer’s dementias, diabetes, and glucose tolerance. Neurology. 1999;52:971–5.

    CAS  PubMed  Google Scholar 

  44. Hoth KF, Tate DF, Poppas A, Forman DE, Gunstad J, Moser DJ, et al. Endothelial function and white matter hyperintensities in older adults with cardiovascular disease. Stroke. 2007;38:308–12.

    PubMed  PubMed Central  Google Scholar 

  45. Gonzales MM, Tarumi T, Tanaka H, Sugawara J, Swann-Sternberg T, Goudarzi K, et al. Functional imaging of working memory and peripheral endothelial function in middle-aged adults. Brain Cogn. 2010;73:146–51.

    PubMed  PubMed Central  Google Scholar 

  46. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14:5–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Physiol Regul Integr Comp Physiol. 2018;314:R387–R98.

    PubMed  Google Scholar 

  48. Tarumi T, Shah F, Tanaka H, Haley AP. Association between central elastic artery stiffness and cerebral perfusion in deep subcortical gray and white matter. Am J Hypertens. 2011;24:1108–13.

    CAS  PubMed  Google Scholar 

  49. Pasha EP, Kaur SS, Gonzales MM, Machin DR, Kasischke K, Tanaka H, et al. Vascular function, cerebral cortical thickness, and cognitive performance in middle-aged Hispanic and non-Hispanic Caucasian adults. J Clin Hypertens. 2015;17:306–12.

    Google Scholar 

  50. Pasha EP, Birdsill AC, Oleson S, Tanaka H, Haley AP. Associations of carotid arterial compliance and white matter diffusion metrics during midlife: modulation by sex. Neurobiol Aging. 2018;66:59–67.

    PubMed  PubMed Central  Google Scholar 

  51. Tarumi T, Gonzales MM, Fallow B, Nualnim N, Pyron M, Tanaka H, et al. Central artery stiffness, neuropsychological function, and cerebral perfusion in sedentary and endurance-trained middle-aged adults. J Hypertens. 2013;31:2400–9.

    CAS  PubMed  Google Scholar 

  52. Haley AP, Tarumi T, Gonzales MM, Sugawara J, Tanaka H. Subclinical atherosclerosis is related to lower neuronal viability in middle-aged adults: a H-1 MRS study. Brain Res. 2010;1344:54–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haley AP, Forman DE, Poppas A, Hoth KF, Gunstad J, Jefferson AL, et al. Carotid artery intima-media thickness and cognition in cardiovascular disease. Int J Cardiol. 2007;121:148–54.

    PubMed  Google Scholar 

  54. Laosiripisan J, Tarumi T, Gonzales MM, Haley AP, Tanaka H. Association between cardiovagal baroreflex sensitivity and baseline cerebral perfusion of the hippocampus. Clin Auton Res. 2015;25:213–8.

    PubMed  Google Scholar 

  55. Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia aging study. Ann Neurol. 2002;52:168–74.

    PubMed  Google Scholar 

  56. Moreno-Navarrete JM, Blasco G, Puig J, Biarnes C, Rivero M, Gich J, et al. Neuroinflammation in obesity: circulating lipopolysaccharide-binding protein associates with brain structure and cognitive performance. Int J Obes (2005). 2017;41(11):1627–35.

    CAS  Google Scholar 

  57. Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol. 2006;65:199–203.

    PubMed  Google Scholar 

  58. Eagan DE, Gonzales MM, Tarumi T, Tanaka H, Stautberg S, Haley AP. Elevated serum C-reactive protein relates to increased cerebral myoinositol levels in middle-aged adults. Cardiovasc Psychiatry Neurol. 2012;2012:120540.

    PubMed  PubMed Central  Google Scholar 

  59. Schur EA, Melhorn SJ, Oh SK, Lacy JM, Berkseth KE, Guyenet SJ, et al. Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity (Silver Spring). 2015;23(11):2142–8.

    CAS  Google Scholar 

  60. Siervo M, Arnold R, Wells JCK, Tagliabue A, Colantuoni A, Albanese E, et al. Intentional weight loss in overweight and obese individuals and cognitive function: a systematic review and meta-analysis. Obes Rev. 2011;12:968–83.

    CAS  PubMed  Google Scholar 

  61. Veronese N, Facchini S, Stubbs B, Luchini C, Solmi M, Manzato E, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87–94.

    PubMed  Google Scholar 

  62. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol Biol Sci Med Sci. 2003;58:176–80.

    Google Scholar 

  63. Tanaka H, Tarumi T, Rittweger J. Aging and physiological lessons from master athletes. Compr Physiol. 2019;10(1):261–96.

    PubMed  Google Scholar 

  64. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72.

    CAS  PubMed  Google Scholar 

  65. Handley JD, Williams DM, Caplin S, Stephens JW, Barry J. Changes in cognitive function following bariatric surgery: a systematic review. Obes Surg. 2016;26:2530–7.

    PubMed  Google Scholar 

  66. Thiara G, Cigliobianco M, Muravsky A, Paoli RA, Mansur R, Hawa R, et al. Evidence for neurocognitive improvement after bariatric surgery: a systematic review. Psychosomatics. 2017;58:217–27.

    PubMed  Google Scholar 

  67. Rullmann M, Preusser S, Poppitz S, Heba S, Hoyer J, Schütz T, et al. Gastric-bypass surgery induced widespread neural plasticity of the obese human brain. Neuroimage. 2018;172:853–63.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Tanaka.

Ethics declarations

Conflict of Interest

None.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Etiology of Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H., Gourley, D.D., Dekhtyar, M. et al. Cognition, Brain Structure, and Brain Function in Individuals with Obesity and Related Disorders. Curr Obes Rep 9, 544–549 (2020). https://doi.org/10.1007/s13679-020-00412-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-020-00412-y

Keywords

Navigation