Skip to main content

A Review of Obesity, Physical Activity, and Cardiovascular Disease

Abstract

Purpose of Review

The focus of this review is to discuss obesity, physical activity (and physical inactivity/sedentary behavior), cardiovascular disease (CVD), and their often interrelated health implications. The authors summarize the pathophysiological changes associated with obesity, which lead to the development of CVD, recommendations for interventions such as diet, increased physical activity, and weight loss according to current literature and guidelines, and the critical importance of cardiorespiratory fitness (CRF).

Recent Findings

Clinical trials continue to demonstrate improved outcomes among overweight or obese individuals who achieve a healthy weight using various methods. Increasing CRF levels appears to demonstrate the largest health improvements, regardless of underlying comorbidities or achieving weight loss.

Summary

CRF, which is perhaps the single most important predictor of overall health, seems more important than weight loss alone regarding improved CVD outcomes in the obese population. These findings are reproduced in studies involving patients with various forms of CVD and CVD risk factors. The importance of CRF is well established; future endeavors to establish specific CRF targets for various patient cohorts are needed.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

ACC:

American College of Cardiology

AF:

Atrial fibrillation

AHA:

American Heart Association

BMI:

Body mass index

CAD:

Coronary artery disease

CRF:

Cardiorespiratory fitness

CV:

Cardiovascular

CVD:

Cardiovascular disease

DHHS:

Department of Health and Human Services

DM:

Diabetes mellitus

HF:

Heart failure

HTN:

Hypertension

MET:

Metabolic equivalent

MetS:

Metabolic syndrome

MHO:

Metabolically healthy obesity

MI:

Myocardial infarction

PA:

Physical activity

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, et al. Role of adipokines in cardiovascular disease. Circ J. 2017;81(7):920–8. https://doi.org/10.1253/circj.CJ-17-0458.

    CAS  Article  PubMed  Google Scholar 

  2. Global Obesity Health Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://doi.org/10.1056/NEJMc1710026.

    Article  Google Scholar 

  3. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults. J Am Coll Cardiol. 2014;63(25 Pt B):2985–3023. https://doi.org/10.1016/j.jacc.2013.11.004.

    Article  PubMed  Google Scholar 

  4. Hales C, Carroll M, Fryar C, Ogden C. Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief 2020.

  5. Marcus BH, Williams DM, Dubbert PM, Sallis JF, King AC, Yancey AK, et al. Physical activity intervention studies. Circulation. 2006;114(24):2739–52. https://doi.org/10.1161/circulationaha.106.179683.

    Article  PubMed  Google Scholar 

  6. Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC Jr, Hayman LL, et al. Value of primordial and primary prevention for cardiovascular disease. Circulation. 2011;124(8):967–90. https://doi.org/10.1161/cir.0b013e3182285a81.

    CAS  Article  PubMed  Google Scholar 

  7. Carlson SA, Fulton JE, Pratt M, Yang Z, Adams EK. Inadequate physical activity and health care expenditures in the United States. Prog Cardiovasc Dis. 2015;57(4):315–23. https://doi.org/10.1016/j.pcad.2014.08.002.

    Article  PubMed  Google Scholar 

  8. Lavie CJ, Arena R, Blair SN. A call to increase physical activity across the globe in the 21st century. Futur Cardiol. 2016;12(6):605–7. https://doi.org/10.2217/fca-2016-0055.

    CAS  Article  Google Scholar 

  9. Oktay AA, Lavie CJ, Kokkinos PF, Parto P, Pandey A, Ventura HO. The interaction of cardiorespiratory fitness with obesity and the obesity paradox in cardiovascular disease. Prog Cardiovasc Dis. 2017;60(1):30–44. https://doi.org/10.1016/j.pcad.2017.05.005.

    Article  PubMed  Google Scholar 

  10. Lavie C, Arena R, Alpert M, Milani R, Ventura H. Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol. 2018;15(1):45–56. https://doi.org/10.1038/nrcardio.2017.108.

    Article  PubMed  Google Scholar 

  11. Parto P, Lavie CJ. Obesity and cardiovascular diseases. Curr Probl Cardiol. 2017;42(11):376–94. https://doi.org/10.1016/j.cpcardiol.2017.04.004.

    Article  PubMed  Google Scholar 

  12. Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376(3):254–66. https://doi.org/10.1056/NEJMra1514009.

    CAS  Article  PubMed  Google Scholar 

  13. Lavie CJ, McAuley PA, Church TS, Milani RV, Blair SN. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J Am Coll Cardiol. 2014;63(14):1345–54. https://doi.org/10.1016/j.jacc.2014.01.022.

    Article  PubMed  Google Scholar 

  14. Ortiz VE, Kwo J. Obesity: physiologic changes and implications for preoperative management. BMC Anesthesiol. 2015;15:97. https://doi.org/10.1186/s12871-015-0079-8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019;92:98–107. https://doi.org/10.1016/j.metabol.2018.10.011.

    CAS  Article  PubMed  Google Scholar 

  16. Jahangir E, De Schutter A, Lavie CJ. Low weight and overweightness in older adults: risk and clinical management. Prog Cardiovasc Dis. 2014;57(2):127–33. https://doi.org/10.1016/j.pcad.2014.01.001.

    Article  PubMed  Google Scholar 

  17. Carbone S, Lavie CJ, Arena R. Obesity and heart failure: focus on the obesity paradox. Mayo Clin Proc. 2017;92(2):266–79. https://doi.org/10.1016/j.mayocp.2016.11.001.

    Article  PubMed  Google Scholar 

  18. Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2019;16(2):83–99. https://doi.org/10.1038/s41569-018-0097-6.

    Article  PubMed  Google Scholar 

  19. Nakamura K, Fuster JJ, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol. 2014;63(4):250–9. https://doi.org/10.1016/j.jjcc.2013.11.006.

    Article  PubMed  Google Scholar 

  20. Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients. 2019;11(11):2664. https://doi.org/10.3390/nu11112664.

    CAS  Article  PubMed Central  Google Scholar 

  21. Wu ZJ, Cheng YJ, Gu WJ, Aung LHH. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metabolism. 2014;63(9):1157–66. https://doi.org/10.1016/j.metabol.2014.05.001.

    CAS  Article  PubMed  Google Scholar 

  22. Kyrou I, Tsantarlioti O, Panagiotakos DB, et al. Adiponectin circulating levels and 10-year (2002–2012) cardiovascular disease incidence: the ATTICA study. Endocrine. 2017;58(3):542–52. https://doi.org/10.1007/s12020-017-1434-y.

    CAS  Article  PubMed  Google Scholar 

  23. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321. https://doi.org/10.3390/ijms18061321.

    CAS  Article  PubMed Central  Google Scholar 

  24. Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res. 2016;118(11):1752–70. https://doi.org/10.1161/CIRCRESAHA.115.306883.

    CAS  Article  PubMed  Google Scholar 

  25. Ortega FB, Lee DC, Katzmarzyk PT, Ruiz JR, Sui X, Church TS, et al. The intriguing metabolically healthy but obese phenotype: cardiovascular prognosis and role of fitness. Eur Heart J. 2013;34(5):389–97. https://doi.org/10.1093/eurheartj/ehs174.

    Article  PubMed  Google Scholar 

  26. Mongraw-Chaffin M, Foster MC, Anderson CA, et al. Metabolically healthy obesity, transition to metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2018;71(17):1857–1865.

  27. Caleyachetty R, Thomas GN, Toulis KA, Mohammed N, Gokhale KM, Balachandran K, et al. Metabolically healthy obese and incident cardiovascular disease events among 3.5 million men and women. J Am Coll Cardiol. 2017;70(12):1429–37. https://doi.org/10.1016/j.jacc.2017.07.763.

    Article  PubMed  Google Scholar 

  28. Ortega FB, Cadenas-Sanchez C, Migueles JH, Labayen I, Ruiz JR, Sui X, et al. Role of physical activity and fitness in the characterization and prognosis of the metabolically healthy obesity phenotype: a systematic review and meta-analysis. Prog Cardiovasc Dis. 2018;61(2):190–205. https://doi.org/10.1016/j.pcad.2018.07.008.

    Article  PubMed  Google Scholar 

  29. Zheng R, Liu C, Wang C, Zhou B, Liu Y, Pan F, et al. Natural course of metabolically healthy overweight/obese subjects and the impact of weight change. Nutrients. 2016;8(7):430. https://doi.org/10.3390/nu8070430.

    CAS  Article  PubMed Central  Google Scholar 

  30. Hall JE, Do Carmo JM, Da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006. https://doi.org/10.1161/CIRCRESAHA.116.305697.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Garrison RJ, Kannel WB, Stokes J, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham offspring study. Prev Med (Baltim). 1987;16(2):235–51. https://doi.org/10.1016/0091-7435(87)90087-9.

    CAS  Article  Google Scholar 

  32. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10(6):364–76. https://doi.org/10.1038/nrendo.2014.44.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69(7):841–58. https://doi.org/10.1016/j.jacc.2016.11.069.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults a report of the American College of Cardiology/American Heart Association task force on clinical pr. Hypertension. 2018;71(6):e13–e115. https://doi.org/10.1161/HYP.0000000000000065.

    CAS  Article  PubMed  Google Scholar 

  35. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473. https://doi.org/10.1161/JAHA.112.004473.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chang SH, Stoll CRT, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. 2014;149(3):275–87. https://doi.org/10.1001/jamasurg.2013.3654.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jousilahti P, Tuomilehto J, Vartiainen E, Pekkanen J, Puska P. Body weight, cardiovascular risk factors, and coronary mortality: 15-year follow-up of middle-aged men and women in Eastern Finland. Circulation. 1996;93(7):1372–9. https://doi.org/10.1161/01.CIR.93.7.1372.

    CAS  Article  PubMed  Google Scholar 

  38. McGill HC, McMahan CA, Herderick EE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–8. https://doi.org/10.1161/01.CIR.0000018121.67607.CE.

    Article  PubMed  Google Scholar 

  39. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52. https://doi.org/10.1016/S0140-6736(04)17018-9.

    Article  PubMed  Google Scholar 

  40. Lavie CJ, Milani RV, Artham SM, Patel DA, Ventura HO. The obesity paradox, weight loss, and coronary disease. Am J Med. 2009;122(12):1106–14. https://doi.org/10.1016/j.amjmed.2009.06.006.

    CAS  Article  PubMed  Google Scholar 

  41. • Shigdel R, Dalen H, Sui X, Lavie CJ, Wisløff U, Ernstsen L. Cardiorespiratory fitness and the risk of first acute myocardial infarction: the HUNT study. J Am Heart Assoc. 2019;8(9):e010293. https://doi.org/10.1161/JAHA.118.010293. Important – Powerful study demonstrating that cardiorespiratory fitness may substantially reduce the risk of acute myocardial infarction in patients without known cardiovascular disease.

  42. •• Rifai MA, Qureshi WT, Dardari Z, et al. The interplay of the global atherosclerotic cardiovascular disease risk scoring and cardiorespiratory fitness for the prediction of all-cause mortality and myocardial infarction: The Henry Ford ExercIse Testing Project (The FIT Project). Am J Cardiol. 2019;124(4):511–7. https://doi.org/10.1016/j.amjcard.2019.05.033. Important – Cardiorespiratory fitness is inversely associated with all-cause mortality and myocardial infarction at all levels of athersclerotic cardiovascular disease risk.

  43. Horwich TB, Fonarow GC, Clark AL. Obesity and the obesity paradox in heart failure. Prog Cardiovasc Dis. 2018;61(2):151–6. https://doi.org/10.1016/j.pcad.2018.05.005.

    Article  PubMed  Google Scholar 

  44. Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13. https://doi.org/10.1056/NEJMoa020245.

    Article  PubMed  Google Scholar 

  45. Kenchaiah S, Chesebro J. The epidemiologic association between obesity and heart failure. Am Coll Cardiol Ext Learn. 2017;49(8):4–6.

    PubMed  PubMed Central  Google Scholar 

  46. Pandey A, Patel KV, Vaduganathan M, Sarma S, Haykowsky MJ, Berry JD, et al. Physical activity, fitness, and obesity in heart failure with preserved ejection fraction. JACC Hear Fail. 2018;6(12):975–82. https://doi.org/10.1016/j.jchf.2018.09.006.

    Article  Google Scholar 

  47. Kokkinos P, Faselis C, Franklin B, Lavie CJ, Sidossis L, Moore H, et al. Cardiorespiratory fitness, body mass index and heart failure incidence. Eur J Heart Fail. 2019;21(4):436–44. https://doi.org/10.1002/ejhf.1433.

    Article  PubMed  Google Scholar 

  48. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128(16):e240–327. https://doi.org/10.1161/CIR.0b013e31829e8776.

    Article  PubMed  Google Scholar 

  49. Padwal R, McAlister FA, McMurray JJV, et al. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes. 2014;38(8):1110–4. https://doi.org/10.1038/ijo.2013.203.

    Article  Google Scholar 

  50. Uretsky S, Messerli FH, Bangalore S, Champion A, Cooper-DeHoff RM, Zhou Q, et al. Obesity paradox in patients with hypertension and coronary artery disease. Am J Med. 2007;120(10):863–70. https://doi.org/10.1016/j.amjmed.2007.05.011.

    Article  PubMed  Google Scholar 

  51. Mahajan R, Stokes M, Elliott A, Munawar DA, Khokhar KB, Thiyagarajah A, et al. Complex interaction of obesity, intentional weight loss and heart failure: a systematic review and meta-analysis. Heart. 2020;106(1):58–68. https://doi.org/10.1136/heartjnl-2019-314770.

    Article  PubMed  Google Scholar 

  52. Correction Piepoli MF, Davos C, Francis DP, et al. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). Br Med J. 2004;328:189–0. https://doi.org/10.1136/bmj.37938.645220.ee.

    Article  Google Scholar 

  53. Miller JD, Aronis KN, Chrispin J, Patil KD, Marine JE, Martin SS, et al. Obesity, exercise, obstructive sleep apnea, and modifiable atherosclerotic cardiovascular disease risk factors in atrial fibrillation. J Am Coll Cardiol. 2015;66(25):2899–906. https://doi.org/10.1016/j.jacc.2015.10.047.

    Article  PubMed  Google Scholar 

  54. Tedrow UB, Conen D, Ridker PM, Cook NR, Koplan BA, Manson JAE, et al. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation. The WHS (Women’s health study). J Am Coll Cardiol. 2010;55(21):2319–27. https://doi.org/10.1016/j.jacc.2010.02.029.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Perez MV, Wang PJ, Larson JC, Soliman EZ, Limacher M, Rodriguez B, et al. Risk factors for atrial fibrillation and their population burden in postmenopausal women: the women’s health initiative observational study. Heart. 2013;99(16):1173–8. https://doi.org/10.1136/heartjnl-2013-303798.

    Article  PubMed  Google Scholar 

  56. Huxley RR, Lopez FL, Folsom AR, Agarwal SK, Loehr LR, Soliman EZ, et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the atherosclerosis risk in communities (ARIC) study. Circulation. 2011;123(14):1501–8. https://doi.org/10.1161/CIRCULATIONAHA.110.009035.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Foy AJ, Mandrola J, Liu G, Naccarelli GV. Relation of obesity to new-onset atrial fibrillation and atrial flutter in adults. Am J Cardiol. 2018;121(9):1072–5. https://doi.org/10.1016/j.amjcard.2018.01.019.

    Article  PubMed  Google Scholar 

  58. Vyas V, Lambiase P. Obesity and atrial fibrillation: epidemiology, pathophysiology and novel therapeutic opportunities. Arrhythmia Electrophysiol Rev. 2019;8(1):28–36. https://doi.org/10.15420/aer.2018.76.2.

    Article  Google Scholar 

  59. Lee HJ, Choi EK, Lee SH, Han KD, Rhee TM, Park CS, et al. Atrial fibrillation risk in metabolically healthy obesity: a nationwide population-based study. Int J Cardiol. 2017;240:221–7. https://doi.org/10.1016/j.ijcard.2017.03.103.

    Article  PubMed  Google Scholar 

  60. Berkovitch A, Kivity S, Klempfner R, Segev S, Milwidsky A, Erez A, et al. Body mass index and the risk of new-onset atrial fibrillation in middle-aged adults. Am Heart J. 2016;173:41–8. https://doi.org/10.1016/j.ahj.2015.11.016.

    Article  PubMed  Google Scholar 

  61. Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol. 2017;70(16):2022–35. https://doi.org/10.1016/j.jacc.2017.09.002.

    Article  PubMed  Google Scholar 

  62. Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65(20):2159–69. https://doi.org/10.1016/j.jacc.2015.03.002.

    Article  PubMed  Google Scholar 

  63. Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation the CARDIO-FIT study. J Am Coll Cardiol. 2015;66(9):985–96. https://doi.org/10.1016/j.jacc.2015.06.488.

    Article  PubMed  Google Scholar 

  64. Malmo V, Nes BM, Amundsen BH, Tjonna AE, Stoylen A, Rossvoll O, et al. Aerobic interval training reduces the burden of atrial fibrillation in the short term: a randomized trial. Circulation. 2016;133(5):466–73. https://doi.org/10.1161/CIRCULATIONAHA.115.018220.

    Article  PubMed  Google Scholar 

  65. Khan H, Kella D, Rauramaa R, Savonen K, Lloyd MS, Laukkanen JA. Cardiorespiratory fitness and atrial fibrillation: a population-based follow-up study. Hear Rhythm. 2015;12(7):1424–30. https://doi.org/10.1016/j.hrthm.2015.03.024.

    Article  Google Scholar 

  66. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation. J Am Coll Cardiol. 2019;74(1):104–32. https://doi.org/10.1016/j.jacc.2019.01.011.

    Article  PubMed  Google Scholar 

  67. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the american heart association. Circulation. 2013;127(5):652–62. https://doi.org/10.1161/CIR.0b013e31827ee100.

    Article  PubMed  Google Scholar 

  68. Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DL, Fleenor BS, et al. The association between the change in directly measured cardiorespiratory fitness across time and mortality risk. Prog Cardiovasc Dis. 2019;62(2):157–62. https://doi.org/10.1016/j.pcad.2018.12.003.

    Article  PubMed  Google Scholar 

  69. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35. https://doi.org/10.1001/jama.2009.681.

    CAS  Article  PubMed  Google Scholar 

  70. McAuley P, Pittsley J, Myers J, Abella J, Froelicher VF. Fitness and fatness as mortality predictors in healthy older men: the veterans exercise testing study. J Gerontol Ser A Biol Sci Med Sci. 2009;64(6):695–9. https://doi.org/10.1093/gerona/gln039.

    Article  Google Scholar 

  71. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, et al. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. Prog Cardiovasc Dis. 2017;60(1):11–20. https://doi.org/10.1016/j.pcad.2017.03.001.

    Article  PubMed  Google Scholar 

  72. Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56(4):382–90. https://doi.org/10.1016/j.pcad.2013.09.002.

    Article  PubMed  Google Scholar 

  73. Barry VW, Caputo JL, Kang M. The joint association of fitness and fatness on cardiovascular disease mortality: a meta-analysis. Prog Cardiovasc Dis. 2018;61(2):136–41. https://doi.org/10.1016/j.pcad.2018.07.004.

    Article  PubMed  Google Scholar 

  74. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124(5):799–815. https://doi.org/10.1161/CIRCRESAHA.118.312669.

    CAS  Article  PubMed  Google Scholar 

  75. Kaminsky LA, Arena R, Ellingsen Ø, Harber MP, Myers J, Ozemek C, et al. Cardiorespiratory fitness and cardiovascular disease - the past, present, and future. Prog Cardiovasc Dis. 2019;62(2):86–93. https://doi.org/10.1016/j.pcad.2019.01.002.

    Article  PubMed  Google Scholar 

  76. Swift DL, McGee JE, Earnest CP, Carlisle E, Nygard M, Johannsen NM. The effects of exercise and physical activity on weight loss and maintenance. Prog Cardiovasc Dis. 2018;61(2):206–13. https://doi.org/10.1016/j.pcad.2018.07.014.

    Article  PubMed  Google Scholar 

  77. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. J Am Med Assoc. 2007;298(19):2296–304. https://doi.org/10.1001/jama.298.19.2296.

    CAS  Article  Google Scholar 

  78. Tudor-Locke C, Bassett DR. How many steps/day are enough? Sport Med. 2004;34(1):1–8. https://doi.org/10.2165/00007256-200434010-00001.

    Article  Google Scholar 

  79. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7. https://doi.org/10.1016/j.pcad.2013.09.012.

    Article  PubMed  Google Scholar 

  80. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Blair SN, Church TS. Effects of clinically significant weight loss with exercise training on insulin resistance and cardiometabolic adaptations. Obesity. 2016;24(4):812–9. https://doi.org/10.1002/oby.21404.

    CAS  Article  PubMed  Google Scholar 

  81. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71. https://doi.org/10.1249/MSS.0b013e3181949333.

    Article  PubMed  Google Scholar 

  82. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–8. https://doi.org/10.1001/jama.2018.14854.

    Article  PubMed  Google Scholar 

  83. Agriculture USD of H and HS and USD of. 2015–2020 Dietary Guidelines for Americans. 2015–2020 Diet Guidel Am (8th Ed. 2015. https://doi.org/10.1097/NT.0b013e31826c50af.

  84. Archer E, Lavie CJ, Hill JO. The contributions of ‘diet’ ‘genes’ and physical activity to the etiology of obesity: contrary evidence and consilience. Prog Cardiovasc Dis. 2018;61(2):89–102. https://doi.org/10.1016/j.pcad.2018.06.002.

    Article  PubMed  Google Scholar 

  85. Berry S, Valdes A, Davies R, et al. Predicting personal metabolic responses to food using multi-omics machine learning in over 1000 twins and singletons from the UK and US: the PREDICT I study (OR31–01-19). Curr Dev Nutr. 2019;3(Suppl 1). https://doi.org/10.1093/cdn/nzz037.or31-01-19.

  86. Spector T. Predicting personal metabolic responses to food using multi-omics machine learning in over 1000 twins and singletons from the UK and US: the PREDICT 1 study. Oral presentation at: American Society of Nutrition, 2019; Baltimore, MD.

  87. Seidelmann SB, Claggett B, Cheng S, Henglin M, Shah A, Steffen LM, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Heal. 2018;3(9):e419–28. https://doi.org/10.1016/S2468-2667(18)30135-X.

    Article  Google Scholar 

  88. Billingsley HE, Carbone S, Lavie CJ. Dietary fats and chronic noncommunicable diseases. Nutrients. 2018;10(10):1385. https://doi.org/10.3390/nu10101385.

    CAS  Article  PubMed Central  Google Scholar 

  89. Billingsley H, Rodriguez-Miguelez P, Del Buono MG, Abbate A, Lavie CJ, Carbone S. Lifestyle interventions with a focus on nutritional strategies to increase cardiorespiratory fitness in chronic obstructive pulmonary disease, heart failure, obesity, sarcopenia, and frailty. Nutrients. 2019;11(12):2849. https://doi.org/10.3390/nu11122849.

    Article  PubMed Central  Google Scholar 

  90. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://doi.org/10.1056/NEJMoa1800389.

    CAS  Article  PubMed  Google Scholar 

  91. Howard BV, Van Horn L, Hsia J, et al. Low-fat dietary pattern and risk of cardiovascular disease. JAMA. 2006;295(6):655–66. https://doi.org/10.1001/jama.295.6.655.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Lavie.

Ethics declarations

Conflicts of Interest

Salvatore Carbone is supported by a Career Development Award 19CDA34660318 from the American Heart Association.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Obesity and sedentary behavior are leading preventable causes of CVD and mortality.

• Increasing fitness levels appears to be the most effective way to improve outcomes in obese populations, both with and without CVD, compared with weight loss alone.

• Understanding that individuals may respond very differently to the same diet can help patients and clinicians avoid “diet centrism.”

This article is part of the Topical Collection on Etiology of Obesity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elagizi, A., Kachur, S., Carbone, S. et al. A Review of Obesity, Physical Activity, and Cardiovascular Disease. Curr Obes Rep 9, 571–581 (2020). https://doi.org/10.1007/s13679-020-00403-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-020-00403-z

Keywords

  • Obesity
  • Cardiovascular disease
  • Coronary artery disease
  • Heart failure
  • Atrial fibrillation
  • Cardiorespiratory fitness
  • Physical activity