Skip to main content

Probiotics, Prebiotics, Synbiotics, Postbiotics, and Obesity: Current Evidence, Controversies, and Perspectives

Abstract

Purpose of Review

In this review, we summarize current evidence on gut microbiome and obesity; we discuss the role of probiotics, prebiotics, synbiotics, and postbiotics in obesity prevention and management; and we highlight and analyze main limitations, challenges, and controversies of their use.

Recent Findings

Overall, the majority of animal studies and meta-analyses of human studies examining the use of probiotics and synbiotics in obesity has shown their beneficial effects on weight reduction and other metabolic parameters via their involvement in gut microbiota modulation. Bifidobacterium and Lactobacillus strains are still the most widely used probiotics in functional foods and dietary supplements, but next generation probiotics, such as Faecalibacterium prausnitzii, Akkermansia muciniphila, or Clostridia strains, have demonstrated promising results. On the contrary, meta-analyses of human studies on the use of prebiotics in obesity have yielded contradictory results. In animal studies, postbiotics, mainly short-chain fatty acids, may increase energy expenditure through induction of thermogenesis in brown adipose tissue as well as browning of the white adipose tissue. The main limitations of studies on biotics in obesity include the paucity of human studies; heterogeneity among the studied subgroups regarding age, gender, and lifestyle; and use of different agents with potential therapeutic effects in different formulations, doses, ratio and different pharmacodynamics/pharmacokinetics. In terms of safety, the supplementation with prebiotics, probiotics, and synbiotics has not been associated with serious adverse effects among immune-competent individuals, with the exception of the use of probiotics and synbiotics in immunocompromised patients.

Summary

Further large-scale Randomized Controlled Trials (RCTs) in humans are required to evaluate the beneficial properties of probiotics, prebiotics, synbiotics, and postbiotics; their ideal dose; the duration of supplementation; and the durability of their beneficial effects as well as their safety profile in the prevention and management of obesity.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

AMPK 5' :

AMP-activated protein kinase

BAT:

Brown adipose tissue

BCAA:

Branched-chain amino acids

BMI:

Body mass index

CC:

Camu camu

CRP:

C-reactive protein

C3G:

Cyanidin3-glucoside

DM:

Diabetes mellitus

DNA:

Deoxyribonucleic acid

F/B:

Firmicutes to Bacteroidetes ratio

FIF:

Fermented infant formula

GOS:

Galactooligosacharides

GTE:

Green tea extract

HF:

High fed

HEP:

High-esterified pectin

ITF:

Inulin-type fructans

MS:

Metabolic syndrome

NAFLD:

Non-alcoholic fatty liver disease

PCR:

Polymerase chain reaction

RCT:

Randomized controlled trial

SCFAs:

Short-chain fatty acids

T2DM:

Type 2 diabetes mellitus

TMA:

Trimethylamine

TMAO:

Trimethyl-amine-N-oxide

UCP-1:

Uncoupling protein-1

WAT:

White adipose tissue

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Google Scholar 

  2. 2.

    Bray G, Kim K, Wilding J, Federation WO. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18:715–23.

    CAS  Google Scholar 

  3. 3.

    Franks PW, McCarthy MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science. 2016;354:69–73.

    CAS  PubMed  Google Scholar 

  4. 4.

    Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299:853–5.

    CAS  PubMed  Google Scholar 

  5. 5.

    Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010;33:2277–84.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    • Rastelli M, Knauf C, Cani PD. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity. 2018;26:792–800. This review highlights the role of metabolic endotoxemia in the onset of metabolic disorders and the implications for alterations in gut microbiota-host interactions and ultimately the onset of diseases.

  7. 7.

    Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res. 2017;48:735–53.

    PubMed  Google Scholar 

  8. 8.

    • Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M, et al. Curr Obes Rep. 2019;8(3):317–32 This article focuses on the role of the gut microbiome in obesity and obesity-related disorders.

    PubMed  Google Scholar 

  9. 9.

    Vallianou N, Tzortzatou-Stathopoulou F. Microbiota and cancer: an update. J Chemother. 2019;31(12):59–63.

    CAS  PubMed  Google Scholar 

  10. 10.

    Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22:713–22.

    CAS  PubMed  Google Scholar 

  11. 11.

    •• Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, et al. A microbial perspective of human developmental biology. Nature. 2016;535:48–55. This article gives a microbial perspective of human development which provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment.

  12. 12.

    Vallianou N, Stratigou T, Tsagarakis S. Microbiome and diabetes: where are we now? Diabetes Res Clin Pract. 2018;146:111–8.

    CAS  PubMed  Google Scholar 

  13. 13.

    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    •• Ferrarese R, Ceresola ER, Preti A, Canducci F. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur Rev Med Pharmacol Sci. 2018;22:7588–605 This manuscript is a meta-analysis on the role of probiotics, prebiotics and synbiotics in weight loss and the metabolic syndrome in the era of the gut microbiome.

    CAS  PubMed  Google Scholar 

  15. 15.

    Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.

    CAS  PubMed  Google Scholar 

  16. 16.

    Dodd D, Spietzer MA, Van Treuren W, Merril BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    •• Canfora EE, Meex R, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73 This Review elaborates on the role of microbial metabolites in obesity, NAFLD and T2DM.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.

    PubMed  Google Scholar 

  19. 19.

    Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL. Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat Report. 2015;79:1–16.

    Google Scholar 

  20. 20.

    Hofmann DE, Fraser CM, Palumbo F, Ravel J, Rowthorn V, Schwartz J. Probiotics: achieving a better regulatory ft. Food Drug Law J. 2014;69:237–72.

    Google Scholar 

  21. 21.

    Draper K, Ley C, Parsonnet J. Probiotic guidelines and physician practice: a cross-sectional survey and overview of the literature. Benefic Microbes. 2017;8:507–19.

    CAS  Google Scholar 

  22. 22.

    Williams MD, Ha CY, Ciorba MA. Probiotics as therapy in gastroenterology: a study of physician opinions and recommendations. J Clin Gastroenterol. 2010;44:631–6.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rijkers GT, de Vos WM, Brummer RJ, Morelli L, Corthier G, Marteau P. Health benefits and health claims of probiotics: bridging science and marketing. Br J Nutr. 2011;106:1291–6.

    CAS  PubMed  Google Scholar 

  24. 24.

    Rondanelli M, Faliva MA, Perna S, Giacosa A, Peroni G, Castellazzi AM. Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes. 2017;8(6):521–43.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Saldanha LG. US Food and Drug Administration regulations governing label claims for food products, including probiotics. Clin Infect Dis. 2008;46:S119–21.

    PubMed  Google Scholar 

  26. 26.

    Jung SP, Lee KM, Kang JH, Yun SI, Park HO, Moon Y, et al. Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Fam Med. 2013;34:80–9.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wang ZB, Xin SS, Ding LN, Ding WY, Hou YL, Liu CQ, et al. The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: a systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine. 2019;2019(3862971):14. https://doi.org/10.1155/2019/3862971.

  28. 28.

    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Martin R, Lenoir M, Chain F, Langella P, Bermúdez-Humarán LG. The dual role of MAPK pathway in the regulation of intestinal barrier: the role of the commensal bacterium Faecalibacterium prausnitzii on this regulation. Inflamm Bowel Dis. 2014;20:E17–8.

    PubMed  Google Scholar 

  30. 30.

    Breyner NM, Michon C, de Sousa CS, Vilas Boas PB, Chain F, Azevedo VA, et al. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front Microbiol. 2017;8:114.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cani PD, Everard A. Akkermansia muciniphila – Une nouvelle cible pour contrôler l'obésité, le diabète de type 2 et l'inflammation ? [Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation?]. Med Sci (Paris). 2014;30(2):125–127.

  32. 32.

    •• Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–103. This proof-of-concept study (clinical trial no. NCT02637115 ) shows that the supplementation with A. muciniphila was safe and well tolerated, and may improve several metabolic parameters.

  33. 33.

    Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation. 2016;133:2434–46.

    CAS  PubMed  Google Scholar 

  34. 34.

    Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kadooka Y, Sato M, Ogawa A, Miyoshi M, Uenishi H, Ogawa H, et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br J Nutr. 2013;110:1696–703.

    CAS  PubMed  Google Scholar 

  36. 36.

    Sharafedtinov KK, Plotnikova OA, Alexeeva RI, Sentsova TB, Songisep E, Stsepetova Y, et al. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients-a randomized double-blind placebo-controlled pilot study. Nutr J. 2013;12:138.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Zhang Q, Wu Y, Fei X. Effect of probiotics on body weight and body-mass index: a systematic review and meta-analysis of randomized, controlled trials. Int J Food Sci Nutr. 2015;67:571–80.

    PubMed  Google Scholar 

  38. 38.

    Park S, Bae JH. Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res. 2015;35:566–75.

    CAS  PubMed  Google Scholar 

  39. 39.

    Kunnackal J, Wang L, Nanavati J, Twose C, Signh R, Mullin G. Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis. Genes (Basel). 2018;9:167.

    Google Scholar 

  40. 40.

    Borgeraas H, Johnson LK, Skattebu J, Hertel JK, Hjelmesaeth J. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2018;19(2):219–32.

    CAS  PubMed  Google Scholar 

  41. 41.

    Koutnikova H, Genser B, Monteiro-Sepulveda M, Faurie JM, Rizkalla S, Schrezenmeir J, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019;9:e017995. https://doi.org/10.1136/bmjopen-2017-017995.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wang ZB, Xin SS, Ding LN, Ding WY, Hou YL, Liu CQ, et al. The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2019;2019:3862971–14. https://doi.org/10.1155/2019/3862971.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Beserra BT, Fernandes R, do Rosario VA, Mocellin MC, Kuntz MG, Trindade EB. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr. 2015;34(5):845–58.

    CAS  PubMed  Google Scholar 

  44. 44.

    Da Silva Borges D, Fernandes R, Mello AP, Da Silva Fontura E, Soared Dos Santos AR, Santos De Moraes Trindade EB. Prebiotics may reduce serum concentrations of c-reactive protein and ghrelin in overweight and obese adults: a systematic review and meta-analysis. Nutr Rev. 2019;78(3):235–48 0: 1–14.

    Google Scholar 

  45. 45.

    Sanchez M, Darimont C, Drapeau V, Emady-Azar S, Lepage M, Rezzonico E, et al. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Br J Nutr. 2014;111:1507–19.

    CAS  PubMed  Google Scholar 

  46. 46.

    Saez-Lara MJ, Robles-Sanchez C, Ruiz-Ozenta FJ, Plaza-Diaz J, Gill A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci. 2016;17(6):E928.

    PubMed  Google Scholar 

  47. 47.

    Mohammadi H, Ghavami A, Hadi A, Ascari G, Symonds M, Mirakhajani M. Effects of pro−/synbiotic supplementation on anthropometric and metabolic indices in overweight or obese children and adolescents: a systematic review and meta-analysis. Complement Ther Med. 2019;44:269–76.

    PubMed  Google Scholar 

  48. 48.

    Willemsen LEM, Koetsier MA, van Deventer SJH, van Tol EAF. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut. 2003;52:1442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    John GK, Wang L, Nanavati J, Twose C, Singh R, Mullin G. Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis. Genes (Basel). 2018;9(3):167.

    Google Scholar 

  50. 50.

    Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–64.

    CAS  PubMed  Google Scholar 

  51. 51.

    Ricci A. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notifed to EFSA 8: suitability of taxonomic units notifed to EFSA until march 2018. EFSA J. 2018;16:e05315.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Quin C, Estaki M, Vollman DM, Barnett JA, Gill SK, Gibson DL. Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Sci Rep. 2018;8:8283.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Topcuoglu S, Gursoy T, Ovali F, Serce O, Karatekin G. A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: bacterial probiotics. J Matern Fetal Neonatal Med. 2015;28:1491–4.

    PubMed  Google Scholar 

  54. 54.

    Didari T, Solki S, Mozafari S, Nikfar S, Abdollahi M. A systematic review of the safety of probiotics. Expert Opin Drug Saf. 2014;13:227–39.

    PubMed  Google Scholar 

  55. 55.

    Carvour ML, Wider SL, Ryan KL, Walraven C, Qeadan F, Brett M, et al. Predictors of Clostridium difficile infection and predictive impact of probiotic use in a diverse hospital-wide cohort. Am J Infect Control. 2019;47:2–8.

    PubMed  Google Scholar 

  56. 56.

    Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60(Suppl 2):S129–34.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Boyle RJ, Robins-Browne RM, Tang ML. Probiotic use in clinical practice: what are the risks? Am J Clin Nutr. 2006;83(6):1256–64.

    CAS  PubMed  Google Scholar 

  58. 58.

    Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6(1):39–51.

    CAS  Google Scholar 

  59. 59.

    Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Nieuwenhuiljs VB, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:651–9.

    PubMed  Google Scholar 

  60. 60.

    Hempel S, Newberry S, Ruelaz A, Wang Z, Miles JN, Suttorp MJ, et al. Safety of probiotics used to reduce risk and prevent or treat disease. Evid Rep Technol Assess. 2011; (Full Rep.) 1–645.

  61. 61.

    • Bafeta A, Koh M, Riveros C, Ravaud P. Harms reporting in randomized controlled trials of interventions aimed at modifying microbiota: a systematic review. Ann Intern Med. 2018;169:240–7. This article highlights that harms reporting associated with RCTs assessing probiotics, prebiotics, and synbiotics often is lacking or inadequate.

  62. 62.

    Suez J, Zmora N, Zilberman-Schapira G, Halpern Z, Segal E, Elinav E. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174:1406–23 e16.

    CAS  PubMed  Google Scholar 

  63. 63.

    US Food & Drug Administration. Development & approval process (drugs). https://www.fda.gov/drugs/developmentapprovalprocess/default. htm (2018). Accessed 23 Dec 2019.

  64. 64.

    Grazul H, Kanda LL, Gondek D. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes. 2016;7:101–14.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Kabbani TA, Pallav K, Dowd SE, Villafuerte-Galvez J, Vanga RR, Castillo NE, et al. Prospective randomized controlled study on the effects of Saccharomyces boulardii CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers. Gut Microbes. 2017;8:17–32.

    CAS  PubMed  Google Scholar 

  66. 66.

    De Wolfe TJ, Eggers S, Barker AK, Kates AE, Dill-McFarland KA, Suen G, et al. Oral probiotic combination of Lactobacillus and Bifidobacterium alters the gastrointestinal microbiota during antibiotic treatment for Clostridium difficile infection. PLoS One. 2018;13:e0204253.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Brecht M, Garg A, Longstaf K, Cooper C, Andersen C. Lactobacillus sepsis following a laparotomy in a preterm infant: a note of caution. Neonatology. 2016;109:186–9.

    PubMed  Google Scholar 

  68. 68.

    Satokari R. Modulation of gut microbiota for health by current and next-generation probiotics. Nutrients. 2019;11:1921.

    PubMed Central  Google Scholar 

  69. 69.

    Moran-Ramos S, Ocampo Medina E, Gutierrez-Aguilar R, Macías-Kauffer L, Villamil-Ramírez H, López-Contreras BE, et al. An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children. Sci Rep. 2017;7:5607.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism. 2018;92:121–35 68.

    PubMed  Google Scholar 

  71. 71.

    Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. Food Sci Human Wellness. 2013;2:167–72.

    Google Scholar 

  72. 72.

    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–8.

    CAS  PubMed  Google Scholar 

  74. 74.

    Parekh PJ, Arusi E, Vinik AI, Johnson DA. The role and influence of gut microbiota in pathogenesis and management of obesity and metabolic syndrome. Front Endocrinol (Lausanne). 2014;5:47.

    Google Scholar 

  75. 75.

    Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benefic Microbes. 2014;5:3–17.

    CAS  Google Scholar 

  76. 76.

    Kerry R, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: a review. J Food Drug Anal. 2018;26:927–39.

    Google Scholar 

  77. 77.

    Markowiak P, Slizewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018;10:21.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl. 2):S1–S63.

    CAS  PubMed  Google Scholar 

  79. 79.

    Requena T, Martinez-Cuesta MC, Pelaez C. Diet and microbiota linked in health and disease. Food Funct. 2018;9:688–704.

    CAS  PubMed  Google Scholar 

  80. 80.

    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP. Thermogenesis is involved in the bodyfat lowering effects of resveratrol in rats. Food Chem. 2013;141:1530–5.

    CAS  PubMed  Google Scholar 

  81. 81.

    Arias N, Picó C, Teresa Macarulla M, Oliver P, Miranda J, Palou A, et al. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity. 2017;25:111–21.

    CAS  PubMed  Google Scholar 

  82. 82.

    Wang S, Liang X, Yang Q, Fu X, Zhu M, Rodgers BD, et al. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res. 2017;61:4.

    Google Scholar 

  83. 83.

    Larrosa M, Yanez-Gascon MJ, Selma MV, Gonzalez-Sarrias A, Toti S, Ceron JJ, et al. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem. 2009;57:2211–20.

    CAS  PubMed  Google Scholar 

  84. 84.

    Etxeberria U, Arias N, Boque N, Macarulla MT, Portillo MP, Martinez JA, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015;26:651–60.

    CAS  PubMed  Google Scholar 

  85. 85.

    Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7:e02210–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    You Y, Yuan X, Liu X, Liang C, Meng M, Huang Y, et al. Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function. Mol Nutr Food Res. 2017;61:11.

    Google Scholar 

  87. 87.

    You Y, Han X, Guo J, Guo Y, Yin M, Liu G, et al. Cyanidin3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. J Funct Foods. 2018;41:10.

    Google Scholar 

  88. 88.

    Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem. 2017;49:15–21.

    CAS  PubMed  Google Scholar 

  89. 89.

    Anhê FF, Nachbar RT, Varin TV, Trottier J, Dudonné S, Le Barz M, et al. Treatment with camu camu. Gut. 2018. https://doi.org/10.1136/gutjnl-2017-315565.

  90. 90.

    Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health. Nutrients. 2010;2:1266–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol. 2014;426(23):3838–50.

    CAS  PubMed  Google Scholar 

  92. 92.

    Sanchez D, Muguerza B, Moulay L, Hernandez R, Miguel M, Aleixandre A. Highly methoxylated pectin improves insulin resistance and other cardiometabolic risk factors in Zucker fatty rats. J Agric Food Chem. 2008;56:3574–81.

    CAS  PubMed  Google Scholar 

  93. 93.

    Palou M, Sánchez J, García-Carrizo F, Palou A, Picó C. Pectin supplementation in rats mitigates age-related impairment in insulin and leptin sensitivity independently of reducing food intake. Mol Nutr Food Res. 2015;59:2022–33.

    CAS  PubMed  Google Scholar 

  94. 94.

    Weitkunat K, Stuhlmann C, Postel A, Rumberger S, Fankhänel M, Woting A, et al. Short-chain fatty acids and inulin, but not guar gum, prevents diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci Rep. 2017;7:6109.

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Li K, Zhang L, Xue J, Yang X, Dong X, Sha L, et al. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food Funct. 2019;10:1915–27.

    CAS  PubMed  Google Scholar 

  96. 96.

    Murakami Y, Ojima-Kato T, Saburi W, Mori H, Matsui H, Tanabe S, et al. Supplemental epilactose prevents metabolic disorders through uncoupling protein-1 induction in the skeletal muscle of mice fed high-fat diets. Br J Nutr. 2015;114:1774–83.

    CAS  PubMed  Google Scholar 

  97. 97.

    Barathikannan K, Chelliah R, Rubab M, Daliri EB, Elahi F, Kim DH, et al. Gut microbiome modulation based on probiotic application for anti-obesity: a review on efficacy and validation. Microorganisms. 2019;7(10):E456. https://doi.org/10.3390/microorganisms7100456.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Crovesy L, Ostrowski M, Ferreira D, Rosado EL, Soares-Mota M. Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes. 2017;41:1607–14.

    CAS  Google Scholar 

  99. 99.

    Krumbeck JA, Rasmussen HE, Hutkins RW, Clarke J, Shawron K, Keshavarzian A, et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome. 2018;6(1):121.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol. 2017;49:129–39.

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    • Reynés B, Palou M, Rodríguez AM, Palou A. Regulation of adaptive thermogenesis and browning by prebiotics and postbiotics. Front Physiol. 2019;9:1908. https://doi.org/10.3389/fphys.2018.01908 eCollection 2018. This manuscript explains the mechanisms behind the browning of white adipose tissue and the increase of brown adipose tissue as a result of the use of prebiotics and postbiotics.

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Choi BR, Kwon EY, Kim HJ, Choi MS. Role of synbiotics containing d-allulose in the alteration of body fat and hepatic lipids in diet-induced obese mice. Nutrients. 2018;10:1797. https://doi.org/10.3390/n101111797.

    Article  PubMed Central  Google Scholar 

  103. 103.

    Mischke M, Arora T, Tims S, Engels E, Oosting A, Backhed F. Specific synbiotics in early life protect against diet-induced obesity in adult mice. Diabetes Obes Metab. 2018;20:1408–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, et al. Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol. 2018;75:105–14.

    Google Scholar 

  105. 105.

    Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci. 2019;20(19):E4673. https://doi.org/10.3390/ijms20194673.

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Schonfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57:943–54.

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240. https://doi.org/10.1371/journal.pone.0035240.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Moreno-Navarrete JM, Serino M, Blasco-Baque V, Azalbert V, Barton RH, Cardellini M, et al. Gut microbiota interacts with markers of adipose tissue browning, insulin action and plasma acetate in morbid obesity. Mol Nutr Food Res. 2018;62:3.

    Google Scholar 

  109. 109.

    De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84–96.

    PubMed  Google Scholar 

  110. 110.

    Shirouchi B, Nagao K, Umegatani M, Shiraishi A, Morita Y, Kai S, et al. Probiotic lactobacillus gasseri SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure. Br J Nutr. 2016;116:451–8.

    CAS  PubMed  Google Scholar 

  111. 111.

    Breton J, Tennoune N, Lucas N, Francois M, Legrand R, Jacquemot J, et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 2016;23:324–34.

    CAS  PubMed  Google Scholar 

  112. 112.

    Han X, Guo J, You Y, Yin M, Liang J, Ren C, et al. Vanillic acid activates thermogenesis in brown and white adipose tissue. Food Funct. 2018;9:4366–75.

    CAS  PubMed  Google Scholar 

  113. 113.

    •• Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29 This Review focuses on the prons and cons of probiotics.

    CAS  PubMed  Google Scholar 

  114. 114.

    Garima S, Sin-Hyeog I. Probiotics as a potential immunomodulating pharmabiotics in allergic diseases: current status and future prospects. Allergy, Asthma Immunol Res. 2018;10(6):575–90.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natalia Vallianou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vallianou, N., Stratigou, T., Christodoulatos, G.S. et al. Probiotics, Prebiotics, Synbiotics, Postbiotics, and Obesity: Current Evidence, Controversies, and Perspectives. Curr Obes Rep 9, 179–192 (2020). https://doi.org/10.1007/s13679-020-00379-w

Download citation

Keywords

  • Diet
  • Gut
  • Intestine
  • Metabolic syndrome
  • Microbiome
  • Microbiota
  • Obesity
  • Postbiotics
  • Prebiotics
  • Probiotics
  • Sybiotics