Skip to main content

Advertisement

Log in

Sleep Apnea, Obesity, and Disturbed Glucose Homeostasis: Epidemiologic Evidence, Biologic Insights, and Therapeutic Strategies

  • Metabolism (M Dalamaga, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obstructive sleep apnea (OSA), obesity, and disturbed glucose homeostasis are usually considered distinct clinical condition, although they are tightly related to each other. The aim of our manuscript is to provide an overview of the current evidence on OSA, obesity, and disturbed glucose homeostasis providing epidemiologic evidence, biological insights, and therapeutic strategies.

Recent Findings

The mechanisms hypothesized to be involved in this complex interplay are the following: (1) “direct weight-dependent” mechanisms, according to which fat excess compromises respiratory mechanics, and (2) “indirect weight-dependent” mechanisms such as hyperglycemia, insulin resistance and secondary hyperinsulinemia, leptin resistance and other hormonal dysregulations frequently found in subjects with obesity, type 2 diabetes, and/or sleep disorders. Moreover, the treatment of each of these clinical conditions, through weight loss induced by diet or bariatric surgery, the use of anti-obesity or antidiabetic drugs, and continuous positive airway pressure (CPAP), seems to positively influence the others.

Summary

These recent data suggest not only that there are multiple connections among these diseases but also that treating one of them may result in an improvement of the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188:996–1004.

    PubMed  PubMed Central  Google Scholar 

  2. American Academy of Sleep Medicine. International classification of sleep disorders: diagnostic and coding manual. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.

    Google Scholar 

  3. Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383:736–47. https://doi.org/10.1016/S0140-6736(13)60734-5.

    Article  PubMed  Google Scholar 

  4. Friedman M, Ibrahim H, Joseph NJ. Staging of obstructive sleep apnea/hypopnea syndrome: a guide to appropriate treatment. Laryngoscope. 2004;114:454–9. https://doi.org/10.1097/00005537-200403000-00013.

    Article  PubMed  Google Scholar 

  5. Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, Poptani H, et al. Tongue fat and its relationship to obstructive sleep apnea. Sleep. 2014;37:1639–48. https://doi.org/10.5665/sleep.4072.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5:136–43. https://doi.org/10.1513/pats.200709-155MG.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pamidi S, Wroblewski K, Broussard J, Day A, Hanlon EC, Abraham V, et al. Obstructive sleep apnea in young lean men: impact on insulin sensitivity and secretion. Diabetes Care. 2012;35:2384–9. https://doi.org/10.2337/dc12-0841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kallianos A, Trakada G, Papaioannou T, Nikolopouloss I, Mitrakou A, Manios E, et al. Glucose and arterial blood pressure variability in obstructive sleep apnea syndrome. Eur Rev Med Pharmacol Sci. 2013;17:1932–7.

    CAS  PubMed  Google Scholar 

  9. •• Nakata K, Miki T, Tanno M, Ohnishi H, Yano T, Muranaka A, et al. Distinct impacts of sleep-disordered breathing on glycemic variability in patients with and without diabetes mellitus. PLoS ONE. 2017;12:e0188689. https://doi.org/10.1371/journal.pone.0188689Severity of sleep Disorders Breathing was associated with higher Glicemic Variability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5.

    CAS  PubMed  Google Scholar 

  11. Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177:385–90.

    CAS  PubMed  Google Scholar 

  12. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31:1071–8. https://doi.org/10.5665/sleep/31.8.1071.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lopez PP, Stefan B, Schulman CI, Byers PM. Prevalence of sleep apnea in morbidly obese patients who presented for weight loss surgery evaluation: more evidence for routine screening for obstructive sleep apnea before weight loss surgery. Am Surg. 2008;74:834–8.

    PubMed  Google Scholar 

  14. Elmasry A, Lindberg E, Berne C, Janson C, Gislason T, Awad Tageldin M, et al. Sleep-disordered breathing and glucose metabolism in hypertensive men: a population-based study. J Intern Med. 2001;249(2):153–61.

    CAS  PubMed  Google Scholar 

  15. Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, et al. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32:1017–9.

    PubMed  PubMed Central  Google Scholar 

  16. • Manin G, Pons A, Baltzinger P, Moreau F, Iamandi C, Wilhelm JM, et al. Obstructive sleep apnoea in people with type 1 diabetes: prevalence and association with micro- and macrovascular complications. Diabet Med. 2015;32:90–6 The prevalence of moderate to severe OSA was 46.3% in long-standing T1DM.

    CAS  PubMed  Google Scholar 

  17. Borel AL, Benhamou PY, Baguet JP, Halimi S, Levy P, Mallion JM, et al. High prevalence of obstructive sleep apnoea syndrome in a type 1 diabetic adult population: a pilot study. Diabet Med. 2010;27:1328–9.

    PubMed  Google Scholar 

  18. Vgontzas AN, Kales A. Sleep and its disorders. Ann Rev Med. 1999;50:387–400.

    CAS  PubMed  Google Scholar 

  19. Davies RJ, Ali NJ, Stradling JR. Neck circumference and other clinical features in the diagnosis of the obstructive sleep apnoea syndrome. Thorax. 1992;47:101–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Altan O, Gulay H, Husniye Y, Gunay C, Erkan A, Zekeriya K, et al. Neck circumference as a measure of central obesity: associations with metabolic syndrome and obstructive sleep apnea syndrome beyond waist circumference. Clin Nutr. 2009;28:46–51.

    Google Scholar 

  21. Cizza G, de Jonge L, Piaggi P, Mattingly M, Zhao X, Lucassen E, et al. Neck circumference is a predictor of metabolic syndrome and obstructive sleep apnea in short-sleeping obese men and women. Metab Syndr Relat Disord. 2014 May;12(4):231–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ford MD. MPH risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome. Diabetes Care. 2005;28(7):1769–78.

    PubMed  Google Scholar 

  23. Shelton KE, Woodson H, Gay S, Suratt PM. Pharyngeal fat in obstructive sleep apnea. Am Rev Respir Dis. 1993;148:462–6. https://doi.org/10.1164/ajrccm/148.2.462.

    Article  CAS  PubMed  Google Scholar 

  24. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol (1985). 2010;108:206–11. https://doi.org/10.1152/japplphysiol.00694.2009.

    Article  Google Scholar 

  25. Mortimore IL, Marshall I, Wraith PK, Sellar RJ, Douglas NJ. Neck and total body fat deposition in nonobese and obese patients with sleep apnea compared with that in control subjects. Am J Respir Crit Care Med. 1998;157:280–3.

    CAS  PubMed  Google Scholar 

  26. • Appleton SL, Vakulin A, Wittert GA, Martin SA, Grant JF, Taylor AW. The association of obstructive sleep apnea (OSA) and nocturnal hypoxemia with the development of abnormal HbA1c in a population cohort of men without diabetes. Diabetes Res Clin Pract. 2016;114:151–9. https://doi.org/10.1016/j.diabres.2015.12.007Development of abnormal glycaemic metabolism was associated with nocturnal hypoxemia. Improved management of OSA and glycaemic control may occur if patients presenting with one abnormality are assessed for the other.

    Article  CAS  PubMed  Google Scholar 

  27. • Appleton SL, Vakulin A, McEvoy RD, Wittert GA, Martin SA, Grant JF, et al. Nocturnal hypoxemia and severe obstructive sleep apnea are associated with incident type 2 diabetes in a population cohort of men. J Clin Sleep Med. 2015;11:609–14. https://doi.org/10.5664/jcsm.4768Severe undiagnosed OSA and nocturnal hypoxemia were independently associated with the development of diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • Torrella M, Castells I, Gimenez-Perez G, Recasens A, Miquel M, Simo O, et al. Intermittent hypoxia is an independent marker of poorer glycaemic control in patients with uncontrolled type 2 diabetes. Diabetes Metab. 2015;41:312–8. https://doi.org/10.1016/j.diabet.2015.01.002Intermittent hypoxia, a consequence of sleep apnoea, is frequent and has a strong independent association with poorer glycaemic control in patients with uncontrolled T2D.

    Article  CAS  PubMed  Google Scholar 

  29. Mondini S, Guilleminault C. Abnormal breathing patterns during sleep in diabetes. Ann Neurol. 1985;17:391–5.

    CAS  PubMed  Google Scholar 

  30. Gao L, Ortega-Saenz P, Garcia-Fernandez M, Gonzalez-Rodriguez P, Caballero-Eraso C, Lopez-Barneo J. Glucose sensing by carotid body glomus cells: potential implications in disease. Front Physiol. 2014;5:398. https://doi.org/10.3389/fphys.2014.00398.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alvarez-Buylla R, de Alvarez-Buylla ER. Carotid sinus receptors participate in glucose homeostasis. Respir Physiol. 1988;72:347–59.

    CAS  PubMed  Google Scholar 

  32. Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002;99:821–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kadoglou NP, Avgerinos ED, Liapis CD. An update on markers of carotid atherosclerosis in patients with type 2 diabetes. Biomark Med. 2010;4:601–9.

    CAS  PubMed  Google Scholar 

  34. Bottini P, Redolfi S, Dottorini ML, Tantucci C. Autonomic neuropathy increases the risk of obstructive sleep apnea in obese diabetics. Respiration. 2008;75:265–71.

    PubMed  Google Scholar 

  35. Rasche K, Keller T, Tautz B, Hader C, Hergenc G, Antosiewicz J, et al. Obstructive sleep apnea and type 2 diabetes. Eur J Med Res. 2010;15(Suppl 2):152–6.

    PubMed  PubMed Central  Google Scholar 

  36. Bottini P, Dottorini ML, Cristina Cordoni M, Casucci G, Tantucci C. Sleep-disordered breathing in nonobese diabetic subjects with autonomic neuropathy. Eur Respir J. 2003;22:654–60.

    CAS  PubMed  Google Scholar 

  37. Ficker JH, Dertinger SH, Siegfried W, Konig HJ, Pentz M, Sailer D, et al. Obstructive sleep apnoea and diabetes mellitus: the role of cardiovascular autonomic neuropathy. Eur Respir J. 1998;11:14–9.

    CAS  PubMed  Google Scholar 

  38. •• Ryan S. Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J Physiol. 2017;595:2423–30 IH leads to pancreatic β-cell dysfunction and insulin resistance in insulin target organs, skeletal muscle, and adipose tissue.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Polak J, Shimoda LA, Drager LF, Undem C, McHugh H, Polotsky VY, et al. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure. Sleep. 2013;36:1483–90; 1490A−1490B. https://doi.org/10.5665/sleep.3040.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97:943–5.

    CAS  PubMed  Google Scholar 

  41. Andrews RC, Walker BR. Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond). 1999;96:513–23.

    CAS  Google Scholar 

  42. Coste O, Beers PV, Bogdan A, Charbuy H, Touitou Y. Hypoxic alterations of cortisol circadian rhythm in man after simulation of a long duration weight. Steroids. 2005;70:803–10.

    CAS  PubMed  Google Scholar 

  43. •• Lee EJ, Heo W, Kim JY, Kim H, Kang MJ, Kim BR, et al. Alteration of infiammatory mediators in the upper and lower airways under chronic intermittent hypoxia: preliminary animal study. Mediators Inflamm. 2017;2017:4327237 Chronic intermittent hypoxia for 4 weeks altered the levels of inflammatory mediators in both the nose and lungs of mouse model.

    PubMed  PubMed Central  Google Scholar 

  44. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol er Exp (Warsz). 2013;61:119–25.

    CAS  Google Scholar 

  45. • Brusik M, Strbova Z, Petrasova D, Pobeha P, Kuklisova Z, Tkacova R, et al. Increased resting energy expenditure and insulin resistance in male patients with moderate-to severe obstructive sleep apnoea. Physiol Res. 2016;65:969–77 Male patients with moderate-to severe OSA have increased REE paralleled by impaired insulin sensitivity.

    CAS  PubMed  Google Scholar 

  46. • Araujo Lda S, Fernandes JF, Klein MR, Sanjuliani AF. Obstructive sleep apnea is independently associated with inflammation and insulin resistance, but not with blood pressure, plasma catecholamines, and endothelial function in obese subjects. Nutrition. 2015;31:1351–7. https://doi.org/10.1016/j.nut.2015.05.017In obese individuals OSA is independently associated with inflammation and insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  47. Lam JC, Lam B, Yao TJ, Lai AY, Ooi CG, Tam S, et al. A randomized controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. Eur Respir J. 2010;35:138–45.

    CAS  PubMed  Google Scholar 

  48. West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Orax. 2007;62:969–74.

    Google Scholar 

  49. Kohler M, Stoewhas AC, Ayers L, Senn O, Bloch KE, Russi EW, et al. Effects of continuous positive airway pressure therapy withdrawal in patients with obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 2011;184:1192–9.

    PubMed  Google Scholar 

  50. Hoyos CM, Killick R, Yee BJ, Phillips CL, Grunstein RR, Liu PY. Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. Orax. 2012;67:1081–9.

    Google Scholar 

  51. Hein MS, Schlenker EH, Patel KP. Altered control of ventilation in streptozotocin-induced diabetic rats. Proc Soc Exp Biol Med. 1994;207:213–9. https://doi.org/10.3181/00379727-207-43809.

    Article  CAS  PubMed  Google Scholar 

  52. Ramadan W, Petitjean M, Loos N, Geloen A, Vardon G, Delanaud S. Effect of high-fat diet and metformin treatment on ventilation and sleep apnea in non-obese rats. Respir Physiol Neurobiol. 2006;150:52–65. https://doi.org/10.1016/j.resp.2005.02.011.

    Article  CAS  PubMed  Google Scholar 

  53. Chalacheva P, Thum J, Yokoe T, O’Donnell CP, Khoo MC. Development of autonomic dysfunction with intermittent hypoxia in a lean murine model. Respir Physiol Neurobiol. 2013;188:143–51. https://doi.org/10.1016/j.resp.2013.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jun JC, Shin MK, Devera R, Yao Q, Mesarwi O, Bevans-Fonti S, et al. Intermittent hypoxia-induced glucose intolerance is abolished by alphaadrenergic blockade or adrenal medullectomy. Am J Physiol Endocrinol Metab. 2014;307:E1073–83. https://doi.org/10.1152/ajpendo.00373.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904. https://doi.org/10.1172/JCI118235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care. 2007;10:142–8. https://doi.org/10.1097/MCO.0b013e328042ba90.

    Article  CAS  PubMed  Google Scholar 

  57. • Weiszenstein M, Shimoda LA, Koc M, Seda O, Polak J. Inhibition of lipolysis ameliorates diabetic phenotype in a mouse model of obstructive sleep apnea. Am J Respir Cell Mol Biol. 2016;55:299–307. https://doi.org/10.1165/rcmb.2015-0315OCAugmented lipolysis contributes to insulin resistance and glucose intolerance observed in mice exposed to IH. Acipimox treatment ameliorated the metabolic consequences of IH and might represent a novel treatment option for patients with obstructive sleep apnea.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sherwani SI, Aldana C, Usmani S, Adin C, Kotha S, Khan M, et al. Intermittent hypoxia exacerbates pancreatic beta-cell dysfunction in a mouse model of diabetes mellitus. Sleep. 2013;36:1849–58. https://doi.org/10.5665/sleep.3214.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Manzella D, Parillo M, Razzino T, Gnasso P, Buonanno S, Gargiulo A, et al. Soluble leptin receptor and insulin resistance as determinant of sleep apnea. Int J Obes Relat Metab Disord. 2002;26:370–5. https://doi.org/10.1038/sj.ijo.0801939.

    Article  CAS  PubMed  Google Scholar 

  60. Ip MS, Lam KS, Ho C, Tsang KW, Lam W. Serum leptin and vascular risk factors in obstructive sleep apnea. Chest. 2000;118:580–6. https://doi.org/10.1378/chest.118.3.580.

    Article  CAS  PubMed  Google Scholar 

  61. Polotsky M, Elsayed-Ahmed AS, Pichard L, Harris CC, Smith PL, Schneider H, et al. Effects of leptin and obesity on the upper airway function. J Appl Physiol. 2012;112:1637–43. https://doi.org/10.1152/japplphysiol.01222.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Donnell CP, Schaub CD, Haines AS, Berkowitz DE, Tankersley CG, Schwartz AR, et al. Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med. 1999;159:1477–84. https://doi.org/10.1164/ajrccm.159.5.9809025.

    Article  PubMed  Google Scholar 

  63. Lo Re V III, Schutte-Rodin S, Kostman JR. Obstructive sleep apnoea among HIV patients. Int J STD AIDS. 2006;17:614–20. https://doi.org/10.1258/095646206778113078.

    Article  PubMed  Google Scholar 

  64. Correia ML, Rahmouni K. Role of leptin in the cardiovascular and endocrine complications of metabolic syndrome. Diabetes Obes Metab. 2006;8:603–10. https://doi.org/10.1111/j.1463-1326.2005.00562.

    Article  CAS  PubMed  Google Scholar 

  65. • Pierce AM, Brown LK. Obesity hypoventilation syndrome: current theories of pathogenesis. Curr Opin Pulm Med. 2015;21:557–62. https://doi.org/10.1097/MCP.0000000000000210Leptin resistance in obesity and OHS likely contributes to blunting of ventilatory drive and inadequate chemoreceptor response to hypercarbia and hypoxemia.

    Article  CAS  PubMed  Google Scholar 

  66. Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011;121:2133–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. •• Reutrakul S, Siwasaranond N, Nimitphong H, Saetung S, Chirakalwasan N, Chailurkit LO, et al. Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes. Chronobiol Int. 2017;34:382–92 The presence and severity of obstructive sleep apnea as well as the presence of diabetic retinopathy were associated with lower nocturnal melatonin secretion, with an indirect adverse effect on glycemic control.

    CAS  PubMed  Google Scholar 

  68. Peschke E, Muhlbauer E. New evidence for a role of melatonin in glucose regulation. Best Pract Res Clin Endocrinol Metab. 2010;24:829–41.

    CAS  PubMed  Google Scholar 

  69. McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. Melatonin secretion and the incidence of type 2 diabetes. JAMA. 2013;309:1388–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Peschke E, Frese T, Chankiewitz E, Peschke D, Preiss U, Schneyer U, et al. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J Pineal Res. 2006;40:135–43.

    CAS  PubMed  Google Scholar 

  71. Anandam A, Akinnusi M, Kufel T, Porhomayon J, El-Solh AA. Effects of dietary weight loss on obstructive sleep apnea: a meta-analysis. Sleep Breath. 2013;17:227–34. https://doi.org/10.1007/s11325-012-0677-3.

    Article  PubMed  Google Scholar 

  72. Foster GD, Borradaile KE, Sanders MH, Millman R, Zammit G, Newman AB, et al. A randomized study on the effect of weight loss on obstructive sleep apnea amongobese patients with type 2 diabetes: the Sleep AHEAD study. Arch Intern Med. 2009;169:1619–26. https://doi.org/10.1001/archinternmed.2009.266.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kuna ST, Reboussin DM, Borradaile KE, Sanders MH, Millman RP, Zammit G, et al. Long-term effect of weight loss on obstructive sleep apnea severity in obese patients with type 2 diabetes. Sleep. 2013;36(5):641–649A. https://doi.org/10.5665/sleep.2618.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Beglinger C, Degen L. Gastrointestinal satiety signals in humans—physiologic roles for GLP-1 and PYY ? Physiol Behav. 2007;89(4):460–4.

    Google Scholar 

  75. • Blackman A, Foster GD, Zammit G, Rosenberg R, Aronne L, Wadden T, et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond). 2016;40(8):1310–9. https://doi.org/10.1038/ijo.2016.52As an adjunct to diet and exercise, liraglutide 3.0 mg was generally well tolerated and produced significantly greater reductions than placebo in AHI, body weight, SBP and HbA1c in participants with obesity and moderate/severe OSA.

    Article  CAS  Google Scholar 

  76. Varela JE, Hinojosa MW, Nguyen NT. Resolution of obstructive sleep apnea after laparoscopic gastric bypass. Obes Surg. 2007;17:1279–82. https://doi.org/10.1007/s11695-007-9228-6.

    Article  PubMed  Google Scholar 

  77. • Arble DM, Sandoval DA, Seeley RJ. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia. 2015;58:211–20. https://doi.org/10.1007/s00125-014-3433-3Bariatric surgery is the most successful treatment for significant weight loss, resolution of type 2 diabetes and the prevention of future weight gain.

    Article  CAS  PubMed  Google Scholar 

  78. Sarkhosh K, Switzer NJ, El-Hadi M, Birch DW, Shi X, Karmali S. The impact of bariatric surgery on obstructive sleep apnea: a systematic review. Obes Surg. 2013;23(3):414–23. https://doi.org/10.1007/s11695-012-0862-2.

    Article  PubMed  Google Scholar 

  79. Sandoval D. Bariatric surgeries: beyond restriction and malabsorption. Int J Obes (Lond). 2011;35:S45–9. https://doi.org/10.1038/ijo.2011.148.

    Article  Google Scholar 

  80. Hutter MM, Schirmer BD, Jones DB, Ko CY, Cohen ME, Merkow RP, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254:410–20; discussion 420–2. https://doi.org/10.1097/SLA.0b013e31822c9dac.

    Article  PubMed  Google Scholar 

  81. Carlin AM, Zeni TM, English WJ, Hawasli AA, Genaw JA, Krause KR, et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity. Ann Surg. 2013;257:791–7. https://doi.org/10.1097/SLA.0b013e3182879ded.

    Article  PubMed  Google Scholar 

  82. Dixon JB, Schachter LM, O’Brien PE, Jones K, Grima M, Lambert G, et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;308:1142–9. https://doi.org/10.1001/2012.jama.11580.

    Article  CAS  PubMed  Google Scholar 

  83. Pallayova M, Steele KE, Magnuson TH, Schweitzer MA, Smith PL, Patil SP, et al. Sleep apnea determines soluble TNF-α receptor 2 response to massive weight loss. Obes Surg. 2011;21(9):1413–23. https://doi.org/10.1007/s11695-011-0359-4.

    Article  PubMed  PubMed Central  Google Scholar 

  84. • Shaw JE, Punjabi NM, Naughton MT, Willes L, Bergenstal RM, Cistulli PA, et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med. 2016;194:486–92 This trial showed no effect of positive airway pressure therapy on glycemic control in patients with relatively well-controlled type 2 diabetes and obstructive sleep apnea.

    CAS  PubMed  Google Scholar 

  85. Sivam S, Phillips CL, Trenell MI, Yee BJ, Liu PY, Wong KK, et al. Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. Eur Respir J. 2012;40:913–8.

    CAS  PubMed  Google Scholar 

  86. Hecht L, Mohler R, Meyer G. Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci. 2011;9:Doc20.

    PubMed  PubMed Central  Google Scholar 

  87. •• Chen L, Kuang J, Pei JH, Chen HM, Chen Z, Li ZW, et al. Continuous positive airway pressure and diabetes risk in sleep apnea patients: a systemic review and meta-analysis. Eur J Intern Med. 2017;39:39–50. https://doi.org/10.1016/j.ejim.2016.11.010These findings support the use of CPAP in non-diabetic and pre-diabetic patients with OSA to reduce change of HOMA-IR and possibly reduce the risk of developing type 2 diabetes in this patient population.

    Article  PubMed  Google Scholar 

  88. Ramadan W, Dewasmes G, Petitjean M, Wiernsperger N, Delanaud S, Geloen A, et al. Sleep apnea is induced by a high-fat diet and reversed and prevented by metformin in non-obese rats. Obesity (Silver Spring). 2007;15:1409–18. https://doi.org/10.1038/oby.2007.169.

    Article  Google Scholar 

  89. El-Sharkawy AA, Abdelmotaleb GS, Aly MK, Kabel AM. Effect of metformin on sleep disorders in adolescent girls with polycystic ovarian syndrome. J Pediatr Adolesc Gynecol. 2014;27(6):347–52. https://doi.org/10.1016/j.jpag.2014.01.004.

    Article  PubMed  Google Scholar 

  90. •• Furukawa S, Miyake T, Senba H, Sakai T, Furukawa E, Yamamoto S, et al. The effectiveness of dapagliflozin for sleep-disordered breathing among Japanese patients with obesity and type 2 diabetes mellitus. Endocr J. 2018;65(9):953–61. https://doi.org/10.1507/endocrj.EJ17-0545Dapagliflozin might improve moderate to severe SDB but not mild SDB in Japanese patients with obesity and type 2 diabetes mellitus.

    Article  CAS  PubMed  Google Scholar 

  91. •• Sawada K, Karashima S, Kometani M, Oka R, Takeda Y, Sawamura T, et al. Effect of sodium glucose cotransporter 2 inhibitors on obstructive sleep apnea in patients with type 2 diabetes. Endocr J. 2018;65(4):461–7 SGLT2i reduced not only HbA1c, BW and BMI but also AHI significantly and therefore has potential as an effective treatment of OSAS.

    CAS  PubMed  Google Scholar 

  92. Bertuglia S, Reiter RJ. Melatonin reduces microvascular damage and insulin resistance in hamsters due to chronic intermittent hypoxia. J Pineal Res. 2009;46:307–13.

    CAS  PubMed  Google Scholar 

  93. Hernandez C, Abreu J, Abreu P, Castro A, Jimenez A. Nocturnal melatonin plasma levels in patients with OSAS: the effect of CPAP. Eur Respir J. 2007;30:496–500.

    CAS  PubMed  Google Scholar 

  94. • Tuomi T, Nagorny CLF, Singh P, Bennet H, Yu Q, Alenkvist I, et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 2016;23:1067–77 An enhanced melatonin signaling in islets reduces insulin secretion, leading to hyperglycemia and greater future risk of T2D. The findings also imply that melatonin physiologically serves to inhibit nocturnal insulin release.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Muscogiuri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugliese, G., Barrea, L., Laudisio, D. et al. Sleep Apnea, Obesity, and Disturbed Glucose Homeostasis: Epidemiologic Evidence, Biologic Insights, and Therapeutic Strategies. Curr Obes Rep 9, 30–38 (2020). https://doi.org/10.1007/s13679-020-00369-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-020-00369-y

Keywords

Navigation