Skip to main content

Advertisement

Log in

Oxytocin and Vasopressin Systems in Obesity and Metabolic Health: Mechanisms and Perspectives

  • Metabolism (M Dalamaga, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The neurohypophysial endocrine system is identified here as a potential target for therapeutic interventions toward improving obesity-related metabolic dysfunction, given its coinciding pleiotropic effects on psychological, neurological and metabolic systems that are disrupted in obesity.

Recent Findings

Copeptin, the C-terminal portion of the precursor of arginine-vasopressin, is positively associated with body mass index and risk of type 2 diabetes. Plasma oxytocin is decreased in obesity and several other conditions of abnormal glucose homeostasis. Recent data also show non-classical tissues, such as myocytes, hepatocytes and β-cells, exhibit responses to oxytocin and vasopressin receptor binding that may contribute to alterations in metabolic function.

Summary

The modulation of anorexigenic and orexigenic pathways appears to be the dominant mechanism underlying the effects of oxytocin and vasopressin on body weight regulation; however, there are apparent limitations associated with their use in direct pharmacological applications. A clearer picture of their wider physiological effects is needed before either system can be considered for therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

AP:

Area postrema

AVP:

Arginine-vasopressin

BAT:

Brown adipose tissue

BMI:

Body mass index

CRH:

Corticotropin-releasing hormone

CSF:

Cerebrospinal fluid

DI:

Diabetes insipidus

HOMA:

Homeostasis model assessment

HPA:

Hypothalamus–pituitary–adrenal

HRmax:

Maximum heart rate

IRAP:

Insulin-regulated aminopeptidase/leucyl/cystinyl aminopeptidase

NPY:

Neuropeptide Y

NTS:

Nucleus tractus solitarius

OXT:

Oxytocin

PVN:

Paraventricular nucleus

RMR:

Resting metabolic rate

SAT:

Subcutaneous adipose tissue

SON:

Suprachiasmatic nucleus

T2DM:

Type 2 diabetes mellitus

TUG:

Tether containing UBX domain for GLUT4

VAT:

Visceral adipose tissue

WAT:

White adipose tissue

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hatton GI. Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol. 1990;34(6):437–504. https://doi.org/10.1016/0301-0082(90)90017-B.

    Article  CAS  PubMed  Google Scholar 

  2. Antoni FA. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol. 1993;14(2):76–122. https://doi.org/10.1006/frne.1993.1004.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011;12(9):524–38. https://doi.org/10.1038/nrn3044.

    Article  CAS  PubMed  Google Scholar 

  4. • Ding C, Leow MK, Magkos F. Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obes Rev. 2019;20(1):22–40. https://doi.org/10.1111/obr.12757 This paper highlights recent developments in the role of oxytocin in obesity and T2DM management.

    Article  CAS  PubMed  Google Scholar 

  5. • Nakamura K, Velho G, Bouby N. Vasopressin and metabolic disorders: translation from experimental models to clinical use. J Intern Med. 2017;282(4):298–309. https://doi.org/10.1111/joim.12649 This paper highlights the mechanistic underpinnings of the vasopressin-hydration axis in glucose homeostasis.

    Article  CAS  PubMed  Google Scholar 

  6. Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J et al. Foresight. Tackling obesities: future choices. Project report. Foresight Tackling obesities: future choices Project report. 2007.

  7. Smith RW, McCann SM. Alterations in food and water intake after hypothalamic lesions in the rat. Am J Phys. 1962;203(2):366–70. https://doi.org/10.1152/ajplegacy.1962.203.2.366.

    Article  CAS  Google Scholar 

  8. Enhörning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M, et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmö Diet and Cancer Study cardiovascular cohort. Int J Obes. 2012;37:598. https://doi.org/10.1038/ijo.2012.88.

    Article  CAS  Google Scholar 

  9. Wannamethee SG, Welsh P, Papacosta O, Lennon L, Whincup PH, Sattar N. Copeptin, insulin resistance, and risk of incident diabetes in older men. J Clin Endocrinol Metab. 2015;100(9):3332–9. https://doi.org/10.1210/JC.2015-2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu FX, Wu HL, Tu KS, Chen JX, Zhang M, Shi C. Serum levels of copeptin are associated with type 2 diabetes and diabetic complications in Chinese population. J Diabetes Complicat. 2016;30(8):1566–70. https://doi.org/10.1016/j.jdiacomp.2016.07.017.

    Article  PubMed  Google Scholar 

  11. Saleem U, Khaleghi M, Morgenthaler NG, Bergmann A, Struck J, Mosley TH Jr, et al. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J Clin Endocrinol Metab. 2009;94(7):2558–64. https://doi.org/10.1210/jc.2008-2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Enhörning S, Leosdottir M, Wallström P, Gullberg B, Berglund G, Wirfält E, et al. Relation between human vasopressin 1a gene variance, fat intake, and diabetes. Am J Clin Nutr. 2009;89(1):400–6. https://doi.org/10.3945/ajcn.2008.26382.

    Article  CAS  PubMed  Google Scholar 

  13. Enhorning S, Sjogren M, Hedblad B, Nilsson PM, Struck J, Melander O. Genetic vasopressin 1b receptor variance in overweight and diabetes mellitus. Eur J Endocrinol. 2016;174(1):69–75. https://doi.org/10.1530/EJE-15-0781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santoso P, Nakata M, Ueta Y, Yada T. Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior. Am J Physiol Endocrinol Metab. 2018;315(4):E478–E88. https://doi.org/10.1152/ajpendo.00338.2016.

    Article  CAS  PubMed  Google Scholar 

  15. Yarkov A, Montero S, Lemus M, Roces de Alvarez-Buylla E, Alvarez-Buylla R. Arginine-vasopressin in nucleus of the tractus solitarius induces hyperglycemia and brain glucose retention. Brain Res. 2001;902(2):212–22. https://doi.org/10.1016/S0006-8993(01)02404-0.

    Article  CAS  PubMed  Google Scholar 

  16. Montero S, Mendoza H, Valles V, Lemus M, Alvarez-Buylla R, Alvarez-Buylla ER. Arginine-vasopressin mediates central and peripheral glucose regulation in response to carotid body receptor stimulation with Na-cyanide. J Appl Physiol. 2006;100(6):1902–9. https://doi.org/10.1152/japplphysiol.01414.2005.

    Article  CAS  PubMed  Google Scholar 

  17. Chong AC, Vogt MC, Hill AS, Bruning JC, Zeltser LM. Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness. Mol Metab. 2015;4(2):83–92. https://doi.org/10.1016/j.molmet.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  18. Plotsky PM, Bruhn TO, Vale W. Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin-induced hypoglycemia. Endocrinology. 1985;117(1):323–9. https://doi.org/10.1210/endo-117-1-323.

    Article  CAS  PubMed  Google Scholar 

  19. Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes. 1979;28(5):503–8. https://doi.org/10.2337/diab.28.5.503.

    Article  CAS  PubMed  Google Scholar 

  20. Spruce BA, McCulloch AJ, Burd J, Orskov H, Heaton A, Baylis PH, et al. The effect of vasopressin infusion on glucose metabolism in man. Clin Endocrinol. 1985;22(4):463–8. https://doi.org/10.1111/j.1365-2265.1985.tb00145.x.

    Article  CAS  Google Scholar 

  21. Chiodera P, Volpi R, Capretti L, Speroni G, Marcato A, Rossi G, et al. Hypoglycemia-induced arginine vasopressin and oxytocin release is mediated by glucoreceptors located inside the blood-brain barrier. Neuroendocrinology. 1992;55(6):655–9. https://doi.org/10.1159/000126185.

    Article  CAS  PubMed  Google Scholar 

  22. Riphagen IJ, Boertien WE, Alkhalaf A, Kleefstra N, Gansevoort RT, Groenier KH, et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31). Diabetes Care. 2013;36(10):3201–7. https://doi.org/10.2337/dc12-2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brooks DP, Nutting DF, Crofton JT, Share L. Vasopressin in rats with genetic and streptozocin-induced diabetes. Diabetes. 1989;38(1):54–7. https://doi.org/10.2337/diab.38.1.54.

    Article  CAS  PubMed  Google Scholar 

  24. Yi SS, Hwang IK, Kim YN, Kim IY, Pak S-I, Lee IS, et al. Enhanced expressions of arginine vasopressin (Avp) in the hypothalamic paraventricular and supraoptic nuclei of type 2 diabetic rats. Neurochem Res. 2007;33(5):833. https://doi.org/10.1007/s11064-007-9519-2.

    Article  CAS  PubMed  Google Scholar 

  25. Taveau C, Chollet C, Waeckel L, Desposito D, Bichet DG, Arthus M-F, et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia. 2015;58(5):1081–90. https://doi.org/10.1007/s00125-015-3496-9.

    Article  CAS  PubMed  Google Scholar 

  26. Masuki S, Mori M, Tabara Y, Miki T, Sakurai A, Morikawa M, et al. Vasopressin V1a receptor polymorphism and interval walking training effects in middle-aged and older people. Hypertension. 2010;55(3):747–54. https://doi.org/10.1161/HYPERTENSIONAHA.109.147728.

    Article  CAS  PubMed  Google Scholar 

  27. Fujiwara Y, Hiroyama M, Sanbe A, Aoyagi T, Birumachi J, Yamauchi J, et al. Insulin hypersensitivity in mice lacking the V1b vasopressin receptor. J Physiol. 2007;584(Pt 1):235–44. https://doi.org/10.1113/jphysiol.2007.136481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hiroyama M, Fujiwara Y, Nakamura K, Aoyagi T, Mizutani R, Sanbe A, et al. Altered lipid metabolism in vasopressin V1B receptor-deficient mice. Eur J Pharmacol. 2009;602(2–3):455–61. https://doi.org/10.1016/j.ejphar.2008.11.043.

    Article  CAS  PubMed  Google Scholar 

  29. Klement J, Ott V, Rapp K, Brede S, Piccinini F, Cobelli C, et al. Oxytocin improves beta-cell responsivity and glucose tolerance in healthy men. Diabetes. 2016. https://doi.org/10.2337/db16-0569.

  30. Lawson EA. The effects of oxytocin on eating behaviour and metabolism in humans. Nat Rev Endocrinol. 2017;13(12):700–9. https://doi.org/10.1038/nrendo.2017.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang H, Wu C, Chen Q, Chen X, Xu Z, Wu J, et al. Treatment of obesity and diabetes using oxytocin or analogs in patients and mouse models. PLoS One. 2013;8(5):e61477. https://doi.org/10.1371/journal.pone.0061477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lawson EA, Marengi DA, DeSanti RL, Holmes TM, Schoenfeld DA, Tolley CJ. Oxytocin reduces caloric intake in men. Obesity. 2015;23(5):950–6. https://doi.org/10.1002/oby.21069.

    Article  CAS  PubMed  Google Scholar 

  33. Ott V, Finlayson G, Lehnert H, Heitmann B, Heinrichs M, Born J, et al. Oxytocin reduces reward-driven food intake in humans. Diabetes. 2013;62(10):3418–25. https://doi.org/10.2337/db13-0663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thienel M, Fritsche A, Heinrichs M, Peter A, Ewers M, Lehnert H, et al. Oxytocin’s inhibitory effect on food intake is stronger in obese than normal-weight men. Int J Obes. 2016;40:1707. https://doi.org/10.1038/ijo.2016.149.

    Article  CAS  Google Scholar 

  35. Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier A-L, Petrosino S, et al. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One. 2011;6(9):e25565. https://doi.org/10.1371/journal.pone.0025565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olson BR, Drutarosky MD, Chow MS, Hruby VJ, Stricker EM, Verbalis JG. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides. 1991;12(1):113–8. https://doi.org/10.1016/0196-9781(91)90176-P.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang G, Cai D. Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment. Am J Physiol Endocrinol Metab. 2011;301(5):E1004–12. https://doi.org/10.1152/ajpendo.00196.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiodera P, Coiro V, Camellini L, Rossi G, Pignatti D, Volpi R, et al. Effect of pharmacological doses of oxytocin on insulin response to glucose in normal man. Horm Res Paediatr. 1984;20(2):150–4.

    Article  CAS  Google Scholar 

  39. Paolisso G, Pizza G, De Riu S, Marrazzo G, Sgambato S, Giugliano D, et al. Effects of oxytocin upon the endocrine pancreas secretion and glucose turnover in normal man. Eur J Endocrinol. 1990;123(5):504–10. https://doi.org/10.1530/acta.0.1230504.

    Article  CAS  Google Scholar 

  40. Maestrini S, Mele C, Mai S, Vietti R, Di Blasio A, Castello L, et al. Plasma oxytocin concentration in pre- and postmenopausal women: its relationship with obesity, body composition and metabolic variables. Obes Facts. 2018;11(5):429–39. https://doi.org/10.1159/000492001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Björkstrand E, Eriksson M, Uvnäs-Moberg K. Evidence of a peripheral and a central effect of oxytocin on pancreatic hormone release in rats. Neuroendocrinology. 1996;63(4):377–83.

    Article  PubMed  Google Scholar 

  42. Altirriba J, Poher A-L, Caillon A, Arsenijevic D, Veyrat-Durebex C, Lyautey J, et al. Divergent effects of oxytocin treatment of obese diabetic mice on adiposity and diabetes. Endocrinology. 2014;155(11):4189–201. https://doi.org/10.1210/en.2014-1466.

    Article  CAS  PubMed  Google Scholar 

  43. Saravani R, Esmaeeli E, Kordi Tamendani M, Nejad MN. Oxytocin receptor gene polymorphisms in patients with diabetes. Gene, Cell Tissue. 2015;2(2):e60171. https://doi.org/10.17795/gct-27904.

    Article  Google Scholar 

  44. Fujiwara Y, Hiroyama M, Sanbe A, Yamauchi J, Tsujimoto G, Tanoue A. Mutual regulation of vasopressin- and oxytocin-induced glucagon secretion in V1b vasopressin receptor knockout mice. J Endocrinol. 2007;192(2):361–9. https://doi.org/10.1677/joe.1.06864.

    Article  CAS  PubMed  Google Scholar 

  45. Naylor AM, Ruwe WD, Veale WL. Thermoregulatory actions of centrally-administered vasopressin in the rat. Neuropharmacology. 1986;25(7):787–94. https://doi.org/10.1016/0028-3908(86)90097-3.

    Article  CAS  PubMed  Google Scholar 

  46. Paro FM, Almeida MC, Carnio EC, Branco LG. Role of L-glutamate in systemic AVP-induced hypothermia. J Appl Physiol (1985). 2003;94(1):271–7. https://doi.org/10.1152/japplphysiol.00291.2002.

    Article  CAS  Google Scholar 

  47. Linggonegoro DW, Sandgren JA, Claflin KE, Perschbacher KJ, Ni J, Pearson NA, et al. Physiological significance of angiotensin AT1A receptors in vasopressin-producing cells. FASEB J. 2017;31(1_supplement):853.1-.1. https://doi.org/10.1096/fasebj.31.1_supplement.853.1.

    Article  Google Scholar 

  48. Daikoku R, Kunitake T, Kato K, Tanoue A, Tsujimoto G, Kannan H. Body water balance and body temperature in vasopressin V1b receptor knockout mice. Auton Neurosci. 2007;136(1–2):58–62. https://doi.org/10.1016/j.autneu.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang G, Bai H, Zhang H, Dean C, Wu Q, Li J, et al. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron. 2011;69(3):523–35. https://doi.org/10.1016/j.neuron.2010.12.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lawson EA, Ackerman KE, Slattery M, Marengi DA, Clarke H, Misra M. Oxytocin secretion is related to measures of energy homeostasis in young amenorrheic athletes. J Clin Endocrinol Metab. 2014;99(5):E881–5. https://doi.org/10.1210/jc.2013-4136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blevins JE, Graham JL, Morton GJ, Bales KL, Schwartz MW, Baskin DG, et al. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am J Physiol Regul Integr Comp Physiol. 2015;308(5):R431–8. https://doi.org/10.1152/ajpregu.00441.2014.

    Article  CAS  PubMed  Google Scholar 

  52. • Enhörning S, Melander O. The vasopressin system in the risk of diabetes and cardiorenal disease, and hydration as a potential lifestyle intervention. Ann Nutr Metab. 2018;72 (suppl 2)(2):21–7. https://doi.org/10.1159/000488304 This paper highlights key evidence regarding vasopressin’s role in metabolic dysfunction.

    Article  CAS  Google Scholar 

  53. Rofe AM, Williamson DH. Metabolic effects of vasopressin infusion in the starved rat. Reversal of ketonaemia. Biochem J. 1983;212(1):231–9. https://doi.org/10.1042/bj2120231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hiroyama M, Aoyagi T, Fujiwara Y, Birumachi J, Shigematsu Y, Kiwaki K, et al. Hypermetabolism of fat in V1a vasopressin receptor knockout mice. Mol Endocrinol. 2007;21(1):247–58. https://doi.org/10.1210/me.2006-0069.

    Article  CAS  PubMed  Google Scholar 

  55. Chikanza IC, Petrou P, Chrousos G. Perturbations of arginine vasopressin secretion during inflammatory stress. Pathophysiologic implications. Ann N Y Acad Sci. 2000;917(1):825–34. https://doi.org/10.1111/j.1749-6632.2000.tb05448.x.

    Article  CAS  PubMed  Google Scholar 

  56. Reder AT. Regulation of production of adrenocorticotropin-like proteins in human mononuclear cells. Immunology. 1992;77(3):436–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuchler S, Perwitz N, Schick RR, Klein J, Westphal S. Arginine-vasopressin directly promotes a thermogenic and pro-inflammatory adipokine expression profile in brown adipocytes. Regul Pept. 2010;164(2–3):126–32. https://doi.org/10.1016/j.regpep.2010.05.016.

    Article  CAS  PubMed  Google Scholar 

  58. McMahon PJ, Proctor KG. Vasopressin attenuates TNF-mediated inflammation in the rat cremaster microcirculation. J Trauma. 2009;67(3):461–73; discussion 73-5. https://doi.org/10.1097/TA.0b013e3181aa01e4.

    Article  CAS  PubMed  Google Scholar 

  59. Park J, Eo EY, Lee K-H, Park JS, Lee J-H, Yoo C-G, et al. The anti-inflammatory effect of arginine-vasopressin on lipopolysaccharide-induced IκBα/nuclear factor-κB cascade. Korean J Crit Care Med. 2015;30(3):151–7. https://doi.org/10.4266/kjccm.2015.30.3.151.

    Article  Google Scholar 

  60. Peng T-C, Huang C-J. Vasopressin inhibits endotoxin-induced upregulation of inflammatory mediators in activated macrophages. Tzu Chi Med J. 2013;25(3):150–4. https://doi.org/10.1016/j.tcmj.2013.04.003.

    Article  Google Scholar 

  61. Szeto A, Sun-Suslow N, Mendez AJ, Hernandez RI, Wagner KV, McCabe PM. Regulation of the macrophage oxytocin receptor in response to inflammation. Am J Physiol Endocrinol Metab. 2017;312(3):E183–E9. https://doi.org/10.1152/ajpendo.00346.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Szeto A, Nation DA, Mendez AJ, Dominguez-Bendala J, Brooks LG, Schneiderman N, et al. Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. Am J Physiol Endocrinol Metab. 2008;295(6):E1495–501. https://doi.org/10.1152/ajpendo.90718.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gold PW, Kaye W, Robertson GL, Ebert M. Abnormalities in plasma and cerebrospinal-fluid arginine vasopressin in patients with anorexia nervosa. N Engl J Med. 1983;308(19):1117–23. https://doi.org/10.1056/NEJM198305123081902.

    Article  CAS  PubMed  Google Scholar 

  64. Wren AM, Small CJ, Abbott CR, Jethwa PH, Kennedy AR, Murphy KG, et al. Hypothalamic actions of neuromedin U. Endocrinology. 2002;143(11):4227–34. https://doi.org/10.1210/en.2002-220308.

    Article  CAS  PubMed  Google Scholar 

  65. Bäckberg M, Hervieu G, Wilson S, Meister B. Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur J Neurosci. 2002;15(2):315–28. https://doi.org/10.1046/j.0953-816x.2001.01859.x.

    Article  PubMed  Google Scholar 

  66. Dhillo WS, Small CJ, Jethwa PH, Russell SH, Gardiner JV, Bewick GA, et al. Paraventricular nucleus administration of calcitonin gene-related peptide inhibits food intake and stimulates the hypothalamo-pituitary-adrenal axis. Endocrinology. 2003;144(4):1420–5. https://doi.org/10.1210/en.2002-220902.

    Article  CAS  PubMed  Google Scholar 

  67. Langhans W, Delprete E, Scharrer E. Mechanisms of vasopressin’s anorectic effect. Physiol Behav. 1991;49(1):169–76. https://doi.org/10.1016/0031-9384(91)90251-I.

    Article  CAS  PubMed  Google Scholar 

  68. Aravich PF, Sladek CD. Vasopressin and glucoprivic-feeding behavior: a new perspective on an ‘old’ peptide. Brain Res. 1986;385(2):245–52. https://doi.org/10.1016/0006-8993(86)91070-x.

    Article  CAS  PubMed  Google Scholar 

  69. Bachner-Melman R, Zohar AH, Elizur Y, Nemanov L, Gritsenko I, Konis D, et al. Association between a vasopressin receptor AVPR1A promoter region microsatellite and eating behavior measured by a self-report questionnaire (Eating Attitudes Test) in a family-based study of a nonclinical population. Int J Eat Disord. 2004;36(4):451–60. https://doi.org/10.1002/eat.20049.

    Article  PubMed  Google Scholar 

  70. Plessow F, Marengi DA, Perry SK, Felicione JM, Franklin R, Holmes TM, et al. Effects of intranasal oxytocin on the blood oxygenation level-dependent signal in food motivation and cognitive control pathways in overweight and obese men. Neuropsychopharmacology. 2018;43(3):638–45. https://doi.org/10.1038/npp.2017.226.

    Article  CAS  PubMed  Google Scholar 

  71. Spetter MS, Feld GB, Thienel M, Preissl H, Hege MA, Hallschmid M. Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control. Sci Rep. 2018;8(1):2736. https://doi.org/10.1038/s41598-018-20963-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van der Klaauw AA, Ziauddeen H, Keogh JM, Henning E, Dachi S, Fletcher PC, et al. Oxytocin administration suppresses hypothalamic activation in response to visual food cues. Sci Rep. 2017;7(1):4266. https://doi.org/10.1038/s41598-017-04600-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Demitrack MA, Lesem MD, Listwak SJ, Brandt HA, Jimerson DC, Gold PW. CSF oxytocin in anorexia nervosa and bulimia nervosa: clinical and pathophysiologic considerations. Am J Psychiatry. 1990;147(7):882–6. https://doi.org/10.1176/ajp.147.7.882.

    Article  CAS  PubMed  Google Scholar 

  74. Mullis K, Kay K, Williams DL. Oxytocin action in the ventral tegmental area affects sucrose intake. Brain Res. 2013;1513:85–91. https://doi.org/10.1016/j.brainres.2013.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. • Blevins JE, Thompson BW, Anekonda VT, Ho JM, Graham JL, Roberts ZS, et al. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization. Am J Physiol Regul Integr Comp Physiol. 2016;310(7):R640–58. https://doi.org/10.1152/ajpregu.00220.2015 This paper provides evidence for the role of oxytocin signalling in the CNS and its potential use as a target for treating diet-induced obesity.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Maejima Y, Iwasaki Y, Yamahara Y, Kodaira M, Sedbazar U, Yada T. Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging (Albany NY). 2011;3(12):1169–77. https://doi.org/10.18632/aging.100408.

    Article  CAS  Google Scholar 

  77. Iwasaki Y, Maejima Y, Suyama S, Yoshida M, Arai T, Katsurada K, et al. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity. Am J Physiol Regul Integr Comp Physiol. 2015;308(5):R360–9. https://doi.org/10.1152/ajpregu.00344.2014.

    Article  CAS  PubMed  Google Scholar 

  78. Arletti R, Benelli A, Bertolini A. Influence of oxytocin on feeding behavior in the rat. Peptides. 1989;10(1):89–93. https://doi.org/10.1016/0196-9781(89)90082-X.

    Article  CAS  PubMed  Google Scholar 

  79. Davis C, Patte K, Zai C, Kennedy JL. Polymorphisms of the oxytocin receptor gene and overeating: the intermediary role of endophenotypic risk factors. Nutr Diabetes. 2017;7(5):e279. https://doi.org/10.1038/nutd.2017.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Masuki S, Sumiyoshi E, Koshimizu TA, Qian J, Higuchi K, Tsujimoto G, et al. Voluntary locomotion linked with cerebral activation is mediated by vasopressin V1a receptors in free-moving mice. J Physiol. 2013;591(14):3651–65. https://doi.org/10.1113/jphysiol.2013.251876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsunematsu T, Fu LY, Yamanaka A, Ichiki K, Tanoue A, Sakurai T, et al. Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: implications for water homeostasis. J Neurosci. 2008;28(1):228–38. https://doi.org/10.1523/JNEUROSCI.3490-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ettenberg A, Vanderkooy D, Lemoal M, Koob G, Bloom F. Can aversive properties of (peripherally-injected) vasopressin account for its putative role in memory? Behav Brain Res. 1983;7(3):331–50. https://doi.org/10.1016/0166-4328(83)90024-4.

    Article  CAS  PubMed  Google Scholar 

  83. Masuki S, Mori M, Tabara Y, Sakurai A, Hashimoto S, Morikawa M, et al. The factors affecting adherence to a long-term interval walking training program in middle-aged and older people. J Appl Physiol (1985). 2015;118(5):595–603. https://doi.org/10.1152/japplphysiol.00819.2014.

    Article  CAS  Google Scholar 

  84. Barraza JA, Grewal NS, Ropacki S, Perez P, Gonzalez A, Zak PJ. Effects of a 10-day oxytocin trial in older adults on health and well-being. Exp Clin Psychopharmacol. 2013;21(2):85–92. https://doi.org/10.1037/a0031581.

    Article  CAS  PubMed  Google Scholar 

  85. Nervi C, Benedetti L, Minasi A, Molinaro M, Adamo S. Arginine-vasopressin induces differentiation of skeletal myogenic cells and up-regulation of myogenin and Myf-5. Cell Growth Differ. 1995;6(1):81–9.

    CAS  PubMed  Google Scholar 

  86. Costa A, Rossi E, Scicchitano BM, Coletti D, Moresi V, Adamo S. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis. Eur J Transl Myol. 2014;24(3):3790. https://doi.org/10.4081/ejtm.2014.3790.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Toschi A, Severi A, Coletti D, Catizone A, Musaro A, Molinaro M, et al. Skeletal muscle regeneration in mice is stimulated by local overexpression of V1a-vasopressin receptor. Mol Endocrinol. 2011;25(9):1661–73. https://doi.org/10.1210/me.2011-1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Costa A, Toschi A, Murfuni I, Pelosi L, Sica G, Adamo S, et al. Local overexpression of V1a-vasopressin receptor enhances regeneration in tumor necrosis factor-induced muscle atrophy. Biomed Res Int. 2014;2014:235426. https://doi.org/10.1155/2014/235426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Breton C, Haenggeli C, Barberis C, Heitz F, Bader CR, Bernheim L, et al. Presence of functional oxytocin receptors in cultured human myoblasts. J Clin Endocrinol Metab. 2002;87(3):1415–8. https://doi.org/10.1210/jcem.87.3.8537.

    Article  CAS  PubMed  Google Scholar 

  90. Lee ES, Uhm K-O, Lee YM, Kwon J, Park S-H, Soo KH. Oxytocin stimulates glucose uptake in skeletal muscle cells through the calcium–CaMKK–AMPK pathway. Regul Pept. 2008;151(1):71–4. https://doi.org/10.1016/j.regpep.2008.05.001.

    Article  CAS  PubMed  Google Scholar 

  91. Berio E, Divari S, Starvaggi Cucuzza L, Biolatti B, Cannizzo FT. 17beta-estradiol upregulates oxytocin and the oxytocin receptor in C2C12 myotubes. PeerJ. 2017;5:e3124. https://doi.org/10.7717/peerj.3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weaver JU, Kopelman PG, McLoughlin L, Forslingt ML, Grossman A. Hyperactivity of the hypothalamo-pituitary-adrenal axis in obesity: a study of ACTH, AVP, β-lipotrophin and cortisol responses to insulin-induced hypoglycaemia. Clin Endocrinol. 1993;39(3):345–50. https://doi.org/10.1111/j.1365-2265.1993.tb02375.x.

    Article  CAS  Google Scholar 

  93. Tran TD, Yao S, Hsu WH, Gimble JM, Bunnell BA, Cheng H. Arginine vasopressin inhibits adipogenesis in human adipose-derived stem cells. Mol Cell Endocrinol. 2015;406:1–9. https://doi.org/10.1016/j.mce.2015.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bush NR, Allison AL, Miller AL, Deardorff J, Adler NE, Boyce WT. Socioeconomic disparities in childhood obesity risk: association with an oxytocin receptor polymorphism. JAMA Pediatr. 2017;171(1):61–7. https://doi.org/10.1001/jamapediatrics.2016.2332.

    Article  PubMed  Google Scholar 

  95. Koshimizu TA, Nasa Y, Tanoue A, Oikawa R, Kawahara Y, Kiyono Y, et al. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci U S A. 2006;103(20):7807–12. https://doi.org/10.1073/pnas.0600875103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee B, Yang C, Chen TH, al-Azawi N, Hsu WH. Effect of AVP and oxytocin on insulin release: involvement of V1b receptors. Am J Phys. 1995;269(6 Pt 1):E1095–100. https://doi.org/10.1152/ajpendo.1995.269.6.E1095.

    Article  CAS  Google Scholar 

  97. Abu-Basha EA, Yibchok-anun S, Hsu WH. Glucose dependency of arginine vasopressin-induced insulin and glucagon release from the perfused rat pancreas. Metabolism. 2002;51(9):1184–90. https://doi.org/10.1053/meta.2002.34052.

    Article  CAS  PubMed  Google Scholar 

  98. O'Carroll AM, Howell GM, Roberts EM, Lolait SJ. Vasopressin potentiates corticotropin-releasing hormone-induced insulin release from mouse pancreatic beta-cells. J Endocrinol. 2008;197(2):231–9. https://doi.org/10.1677/JOE-07-0645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mohan S, Khan D, Moffett RC, Irwin N, Flatt PR. Oxytocin is present in islets and plays a role in beta-cell function and survival. Peptides. 2018;100:260–8. https://doi.org/10.1016/j.peptides.2017.12.019.

    Article  CAS  PubMed  Google Scholar 

  100. Hughes BP, Rye KA, Pickford LB, Barritt GJ, Chalmers AH. A transient increase in diacylglycerols is associated with the action of vasopressin on hepatocytes. Biochem J. 1984;222(2):535–40. https://doi.org/10.1042/bj2220535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Turinsky J, Bayly BP, O'Sullivan DM. 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin. J Biol Chem. 1990;265(14):7933–8.

    CAS  PubMed  Google Scholar 

  102. Grazzini E, Breton C, Derick S, Andres M, Raufaste D, Rickwaert F, et al. Vasopressin receptors in human adrenal medulla and pheochromocytoma. J Clin Endocrinol Metab. 1999;84(6):2195–203. https://doi.org/10.1210/jcem.84.6.5775.

    Article  PubMed  Google Scholar 

  103. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92(4):1813–64. https://doi.org/10.1152/physrev.00035.2011.

    Article  CAS  PubMed  Google Scholar 

  104. Aoyagi T, J-i B, Hiroyama M, Fujiwara Y, Sanbe A, Yamauchi J, et al. Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology. 2007;148(5):2075–84. https://doi.org/10.1210/en.2006-1315.

    Article  CAS  PubMed  Google Scholar 

  105. Zhu J, Chang L, Xie J, Ai H. Arginine vasopressin injected into the dorsal motor nucleus of the vagus inhibits gastric motility in rats. Gastroenterol Res Pract. 2016;2016:4618672. https://doi.org/10.1155/2016/4618672.

    Article  PubMed  Google Scholar 

  106. Xing J, Qian L, Chen J. Experimental gastric dysrhythmias and its correlation with in vivo gastric muscle contractions. World J Gastroenterol. 2006;12(25):3994–8. https://doi.org/10.3748/wjg.v12.i25.3994.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Livingston EH, Passaro EP. Postoperative ileus. Dig Dis Sci. 1990;35(1):121–32. https://doi.org/10.1007/bf01537233.

    Article  CAS  PubMed  Google Scholar 

  108. Ohlsson B, Bjorgell O, Ekberg O, Darwiche G. The oxytocin/vasopressin receptor antagonist atosiban delays the gastric emptying of a semisolid meal compared to saline in human. BMC Gastroenterol. 2006;6:11. https://doi.org/10.1186/1471-230X-6-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Caras SD, Soykan I, Beverly V, Lin Z, McCallum RW. The effect of intravenous vasopressin on gastric myoelectrical activity in human subjects. Neurogastroenterol Motil. 1997;9(3):151–6. https://doi.org/10.1046/j.1365-2982.1997.d01-37.x.

    Article  CAS  PubMed  Google Scholar 

  110. Xu X, Brining DL, Chen JDZ. Effects of vasopressin and long pulse–low frequency gastric electrical stimulation on gastric emptying, gastric and intestinal myoelectrical activity and symptoms in dogs. Neurogastroenterol Motil. 2005;17(2):236–44. https://doi.org/10.1111/j.1365-2982.2004.00616.x.

    Article  CAS  PubMed  Google Scholar 

  111. Fields CT, Chassaing B, Paul MJ, Gewirtz AT, de Vries GJ. Vasopressin deletion is associated with sex-specific shifts in the gut microbiome. Gut Microbes. 2018;9(1):13–25. https://doi.org/10.1080/19490976.2017.1356557.

    Article  CAS  PubMed  Google Scholar 

  112. Babygirija R, Zheng J, Ludwig K, Takahashi T. Central oxytocin is involved in restoring impaired gastric motility following chronic repeated stress in mice. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R157–65. https://doi.org/10.1152/ajpregu.00328.2009.

    Article  CAS  PubMed  Google Scholar 

  113. Bulbul M, Babygirija R, Ludwig K, Takahashi T. Central oxytocin attenuates augmented gastric postprandial motility induced by restraint stress in rats. Neurosci Lett. 2010;479(3):302–6. https://doi.org/10.1016/j.neulet.2010.05.085.

    Article  CAS  PubMed  Google Scholar 

  114. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165(7):1762–75. https://doi.org/10.1016/j.cell.2016.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Borg J, Melander O, Johansson L, Uvnas-Moberg K, Rehfeld JF, Ohlsson B. Gastroparesis is associated with oxytocin deficiency, oesophageal dysmotility with hyperCCKemia, and autonomic neuropathy with hypergastrinemia. BMC Gastroenterol. 2009;9:17. https://doi.org/10.1186/1471-230X-9-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Poutahidis T, Kleinewietfeld M, Smillie C, Levkovich T, Perrotta A, Bhela S, et al. Microbial reprogramming inhibits Western diet-associated obesity. PLoS One. 2013;8(7):e68596. https://doi.org/10.1371/journal.pone.0068596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One. 2013;8(10):e78898. https://doi.org/10.1371/journal.pone.0078898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rossi R, Scharrer E. Vasopressin inhibits food intake in pygmy goats by activation of alpha 1-adrenergic receptors. Pharmacol Biochem Behav. 1994;49(4):897–900. https://doi.org/10.1016/0091-3057(94)90240-2.

    Article  CAS  PubMed  Google Scholar 

  119. Connan F, Lightman SL, Landau S, Wheeler M, Treasure J, Campbell IC. An investigation of hypothalamic-pituitary-adrenal axis hyperactivity in anorexia nervosa: the role of CRH and AVP. J Psychiatr Res. 2007;41(1–2):131–43. https://doi.org/10.1016/j.jpsychires.2005.12.005.

    Article  PubMed  Google Scholar 

  120. Mozid AM, Tringali G, Forsling ML, Hendricks MS, Ajodha S, Edwards R, et al. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. Horm Metab Res. 2003;35(8):455–9. https://doi.org/10.1055/s-2003-41801.

    Article  CAS  PubMed  Google Scholar 

  121. Yoshimura M, Nishimura K, Nishimura H, Sonoda S, Ueno H, Motojima Y, et al. Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system. Sci Rep. 2017;7(1):15728. https://doi.org/10.1038/s41598-017-16049-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pei H, Sutton AK, Burnett KH, Fuller PM, Olson DP. AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Mol Metab. 2014;3(2):209–15. https://doi.org/10.1016/j.molmet.2013.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aoyagi T, Kusakawa S, Sanbe A, Hiroyama M, Fujiwara Y, Yamauchi J, et al. Enhanced effect of neuropeptide Y on food intake caused by blockade of the V(1A) vasopressin receptor. Eur J Pharmacol. 2009;622(1–3):32–6. https://doi.org/10.1016/j.ejphar.2009.09.017.

    Article  CAS  PubMed  Google Scholar 

  124. Israel S, Lerer E, Shalev I, Uzefovsky F, Reibold M, Bachner-Melman R, et al. Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: from autism to altruism with some notes in between. In: Neumann ID, Landgraf R, editors. Progress in Brain Research. Elsevier; 2008. p. 435–49.

  125. Blevins JE, Ho JM. Role of oxytocin signaling in the regulation of body weight. Rev Endocr Metab Disord. 2013;14(4):311–29. https://doi.org/10.1007/s11154-013-9260-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Olszewski PK, Klockars A, Olszewska AM, Fredriksson R, Schioth HB, Levine AS. Molecular, immunohistochemical, and pharmacological evidence of oxytocin's role as inhibitor of carbohydrate but not fat intake. Endocrinology. 2010;151(10):4736–44. https://doi.org/10.1210/en.2010-0151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Borg J, Simrén M, Ohlsson B. Oxytocin reduces satiety scores without affecting the volume of nutrient intake or gastric emptying rate in healthy subjects. Neurogastroenterol Motil. 2011;23(1):56–e5. https://doi.org/10.1111/j.1365-2982.2010.01599.x.

    Article  CAS  PubMed  Google Scholar 

  128. Dallman MF, Pecoraro N, Akana SF, la Fleur SE, Gomez F, Houshyar H, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci U S A. 2003;100(20):11696–701. https://doi.org/10.1073/pnas.1934666100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wideman CH, Murphy HM. Modulatory effects of vasopressin on glucose and protein metabolism during food-restriction stress. Peptides. 1993;14(2):259–61. https://doi.org/10.1016/0196-9781(93)90039-J.

    Article  CAS  PubMed  Google Scholar 

  130. Kamoi K, Ishibashi M, Yamaji T. Thirst and plasma levels of vasopressin, angiotensin II and atrial natriuretic peptide in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1991;11(3):195–202. https://doi.org/10.1016/S0168-8227(05)80033-6.

    Article  CAS  PubMed  Google Scholar 

  131. Habtemichael EN, Alcazar-Roman A, Rubin BR, Grossi LR, Belman JP, Julca O, et al. Coordinated regulation of vasopressin inactivation and glucose uptake by action of TUG protein in muscle. J Biol Chem. 2015;290(23):14454–61. https://doi.org/10.1074/jbc.C115.639203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gajdosechova L, Krskova K, Segarra AB, Spolcova A, Suski M, Olszanecki R, et al. Hypooxytocinaemia in obese Zucker rats relates to oxytocin degradation in liver and adipose tissue. J Endocrinol. 2014;220(3):333–43. https://doi.org/10.1530/joe-13-0417.

    Article  CAS  PubMed  Google Scholar 

  133. Colson P, Ibarondo J, Devilliers G, Balestre MN, Duvoid A, Guillon G. Upregulation of V1a vasopressin receptors by glucocorticoids. Am J Physiol Endocrinol Metab. 2006;263(6):E1054–E62. https://doi.org/10.1152/ajpendo.2006.263.6.E1054.

    Article  Google Scholar 

  134. Whitton PD, Rodrigues LM, Hems DA. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem J. 1978;176(3):893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Keppens S, de Wulf H. The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochim Biophys Acta. 1979;588(1):63–9. https://doi.org/10.1016/0304-4165(79)90371-4.

    Article  CAS  PubMed  Google Scholar 

  136. Howl J, Ismail T, Strain AJ, Kirk CJ, Anderson D, Wheatley M. Characterization of the human liver vasopressin receptor. Profound differences between human and rat vasopressin-receptor-mediated responses suggest only a minor role for vasopressin in regulating human hepatic function. Biochem J. 1991;276(1):189–95. https://doi.org/10.1042/bj2760189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nakamura K, Aoyagi T, Hiroyama M, Kusakawa S, Mizutani R, Sanbe A, et al. Both V(1A) and V(1B) vasopressin receptors deficiency result in impaired glucose tolerance. Eur J Pharmacol. 2009;613(1–3):182–8. https://doi.org/10.1016/j.ejphar.2009.04.008.

    Article  CAS  PubMed  Google Scholar 

  138. Kjær A. Vasopressin as a neuroendocrine regulator of anterior pituitary hormone secretion. Acta Endocrinol. 1993;129(6):489–96. https://doi.org/10.1530/acta.0.1290489.

    Article  PubMed  Google Scholar 

  139. Le JA, Wilson HM, Shehu A, Devi YS, Aguilar T, Gibori G. Prolactin activation of the long form of its cognate receptor causes increased visceral fat and obesity in males as shown in transgenic mice expressing only this receptor subtype. Horm Metab Res. 2011;43(13):931–7. https://doi.org/10.1055/s-0031-1291182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Drissi F, Raoult D, Merhej V. Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog. 2017;106:182–94. https://doi.org/10.1016/j.micpath.2016.03.006.

    Article  PubMed  Google Scholar 

  141. Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity. 2009;17(5):980–4. https://doi.org/10.1038/oby.2009.12.

    Article  CAS  PubMed  Google Scholar 

  142. Watanabe S, Wei F-Y, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. Oxytocin protects against stress-induced cell death in murine pancreatic β-cells. Sci Rep. 2016;6:25185. https://doi.org/10.1038/srep25185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Plante E, Menaouar A, Danalache BA, Yip D, Broderick TL, Chiasson J-L, et al. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice. Endocrinology. 2015;156(4):1416–28. https://doi.org/10.1210/en.2014-1718.

    Article  CAS  PubMed  Google Scholar 

  144. Dunning BE, Moltz JH, Fawcett CP. Modulation of insulin and glucagon secretion from the perfused rat pancreas by the neurohypophysial hormones and by desamino-D-arginine vasopressin (DDAVP). Peptides. 1984;5(5):871–5. https://doi.org/10.1016/0196-9781(84)90109-8.

    Article  CAS  PubMed  Google Scholar 

  145. Widmaier EP, Shah PR, Lee G. Interactions between oxytocin, glucagon and glucose in normal and streptozotocin-induced diabetic rats. Regul Pept. 1991;34(3):235–49. https://doi.org/10.1016/0167-0115(91)90182-g.

    Article  CAS  PubMed  Google Scholar 

  146. Warren KR, Wehring HJ, Liu F, McMahon RP, Chen S, Chester C, et al. Effects of intranasal oxytocin on satiety signaling in people with schizophrenia. Physiol Behav. 2018;189:86–91. https://doi.org/10.1016/j.physbeh.2018.03.008.

    Article  CAS  PubMed  Google Scholar 

  147. Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun. 2014;5:4082. https://doi.org/10.1038/ncomms5082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu Y, Conboy I. Unexpected evolutionarily conserved rapid effects of viral infection on oxytocin receptor and TGF-beta/pSmad3. Skelet Muscle. 2017;7(1):7. https://doi.org/10.1186/s13395-017-0125-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schwartz Y, Goodman HM, Yamaguchi H. Refractoriness to growth hormone is associated with increased intracellular calcium in rat adipocytes. Proc Natl Acad Sci U S A. 1991;88(15):6790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Egan JJ, Saltis J, Wek SA, Simpson IA, Londos C. Insulin, oxytocin, and vasopressin stimulate protein kinase C activity in adipocyte plasma membranes. Proc Natl Acad Sci U S A. 1990;87(3):1052–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mukherjee SP, Mukherjee C. Stimulation of pyruvate dehydrogenase activity in adipocytes by oxytocin: evidence for mediation of the insulin-like effect by endogenous hydrogen peroxide independent of glucose transport. Arch Biochem Biophys. 1982;214(1):211–22. https://doi.org/10.1016/0003-9861(82)90024-8.

    Article  CAS  PubMed  Google Scholar 

  152. Eckertova M, Ondrejcakova M, Krskova K, Zorad S, Jezova D. Subchronic treatment of rats with oxytocin results in improved adipocyte differentiation and increased gene expression of factors involved in adipogenesis. Br J Pharmacol. 2011;162(2):452–63. https://doi.org/10.1111/j.1476-5381.2010.01037.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Maejima Y, Aoyama M, Sakamoto K, Jojima T, Aso Y, Takasu K, et al. Impact of sex, fat distribution and initial body weight on oxytocin’s body weight regulation. Sci Rep. 2017;7(1):8599. https://doi.org/10.1038/s41598-017-09318-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12–22. https://doi.org/10.1172/JCI77812.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Nye C, Kim J, Kalhan SC, Hanson RW. Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol Metab. 2008;19(10):356–61. https://doi.org/10.1016/j.tem.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  156. Elabd C, Basillais A, Beaupied H, Breuil V, Wagner N, Scheideler M, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells. 2008;26(9):2399–407. https://doi.org/10.1634/stemcells.2008-0127.

    Article  CAS  PubMed  Google Scholar 

  157. Liu G-S, Chan EC, Higuchi M, Dusting GJ, Jiang F. Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells. 2012;1(4):976–93. https://doi.org/10.3390/cells1040976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Drehmer DL, de Aguiar AM, Brandt AP, Petiz L, Cadena SM, Rebelatto CK, et al. Metabolic switches during the first steps of adipogenic stem cells differentiation. Stem Cell Res. 2016;17(2):413–21. https://doi.org/10.1016/j.scr.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  159. Roberts ZS, Wolden-Hanson T, Matsen ME, Ryu V, Vaughan CH, Graham JL, et al. Chronic hindbrain administration of oxytocin is sufficient to elicit weight loss in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R357–R71. https://doi.org/10.1152/ajpregu.00169.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wu L, Meng J, Shen Q, Zhang Y, Pan S, Chen Z, et al. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat Commun. 2017;8:15904. https://doi.org/10.1038/ncomms15904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(5):367–77. https://doi.org/10.1038/nrm2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shi H, Halvorsen Y-D, Ellis PN, Wilkison WO, Zemel MB. Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics. 2000;3(2):75–82. https://doi.org/10.1152/physiolgenomics.2000.3.2.75.

    Article  CAS  PubMed  Google Scholar 

  163. Varian BJ, Poutahidis T, DiBenedictis BT, Levkovich T, Ibrahim Y, Didyk E, et al. Microbial lysate upregulates host oxytocin. Brain Behav Immun. 2017;61:36–49. https://doi.org/10.1016/j.bbi.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  164. Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, Kwok C, et al. Beneficial bacteria inhibit cachexia. Oncotarget. 2016;7(11):11803–16. https://doi.org/10.18632/oncotarget.7730.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CD reviewed the literature and drafted the manuscript. FM edited the manuscript. Both authors approved the version submitted for publication.

Corresponding author

Correspondence to Faidon Magkos.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest relevant to the content of this article.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors were performed in accordance with all applicable ethical standards including the Helsinki Declaration and its amendments, institutional/national research committee standards and international/national/institutional guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Magkos, F. Oxytocin and Vasopressin Systems in Obesity and Metabolic Health: Mechanisms and Perspectives. Curr Obes Rep 8, 301–316 (2019). https://doi.org/10.1007/s13679-019-00355-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-019-00355-z

Keywords

Navigation