Skip to main content

Advertisement

Log in

Mechanism of Glucagon-Like Peptide 1 Improvements in Type 2 Diabetes Mellitus and Obesity

  • Obesity Treatment (CM Apovian, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to emphasize the pivotal role of glucagon-like peptide 1 (GLP-1) in tackling the parallel epidemics of obesity and type 2 diabetes (T2DM).

Recent Findings

GLP-1-based therapies and in particular GLP-1 receptor agonists (GLP-1 RA) have proven to be effective in lowering blood glucose and decreasing weight. GLP-1 RA not only mitigate these significant medical burdens but also result in weight loss and weight loss independent factors that decrease cardiovascular disease (CVD) and microvascular complications of T2DM, such as diabetic nephropathy.

Summary

GLP-1-based therapies are critical for a patient-centered approach in choosing appropriate pharmacotherapy for T2DM and obesity while also taking into consideration comorbidities, such as cardiovascular and chronic kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet (London, England). 2011;377(9765):557–67. https://doi.org/10.1016/s0140-6736(10)62037-5.

    Article  PubMed Central  Google Scholar 

  2. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2014;384(9945):766–81. https://doi.org/10.1016/s0140-6736(14)60460-8.

    Article  Google Scholar 

  3. Zhang N, Yang X, Zhu X, Zhao B, Huang T, Ji Q. Type 2 diabetes mellitus unawareness, prevalence, trends and risk factors: National Health and Nutrition Examination Survey (NHANES) 1999–2010. J Int Med Res. 2017;45(2):594–609. https://doi.org/10.1177/0300060517693178.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fruh SM. Obesity: risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29(S1):S3–S14. https://doi.org/10.1002/2327-6924.12510.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seidell JC, Halberstadt J. The global burden of obesity and the challenges of prevention. Ann Nutr Metab. 2015;66(Suppl 2):7–12. https://doi.org/10.1159/000375143.

    Article  CAS  PubMed  Google Scholar 

  6. https://www.cdc.gov/heartdisease/facts.htm. Accessed 03/13 2019.

  7. Kim DD, Basu A. Estimating the medical care costs of obesity in the United States: systematic review, meta-analysis, and empirical analysis. Value Health. 2016;19(5):602–13. https://doi.org/10.1016/j.jval.2016.02.008.

    Article  PubMed  Google Scholar 

  8. Prevention. CfDCa. National Diabetes Statistics Report. Centers for Disease Control and Prevention, US Dept. of Health and Human Services; 2017.

  9. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–82. https://doi.org/10.1210/jcem-24-10-1076.

    Article  CAS  PubMed  Google Scholar 

  10. Rehfeld JF. The origin and understanding of the incretin concept. Front Endocrinol. 2018;9:387. https://doi.org/10.3389/fendo.2018.00387.

    Article  Google Scholar 

  11. White JW, Saunders GF. Structure of the human glucagon gene. Nucleic Acids Res. 1986;14(12):4719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: current advancements & challenges. Biomed pharmacother. 2018;108:952–62. https://doi.org/10.1016/j.biopha.2018.08.088.

    Article  CAS  PubMed  Google Scholar 

  13. Orskov C, Jeppesen J, Madsbad S, Holst JJ. Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest. 1991;87(2):415–23. https://doi.org/10.1172/jci115012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56(2):117–26. https://doi.org/10.1159/000201231.

    Article  CAS  PubMed  Google Scholar 

  15. Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A. 1987;84(10):3434–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144(12):5149–58. https://doi.org/10.1210/en.2003-0323.

    Article  CAS  PubMed  Google Scholar 

  17. Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130(1):159–66. https://doi.org/10.1210/endo.130.1.1309325.

    Article  CAS  PubMed  Google Scholar 

  18. Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, et al. Glucagonostatic and insulinotropic action of glucagonlike peptide I-(7-36)-amide. Diabetes. 1989;38(7):902–5.

    Article  CAS  PubMed  Google Scholar 

  19. Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology. 2000;141(12):4600–5. https://doi.org/10.1210/endo.141.12.7806.

    Article  CAS  PubMed  Google Scholar 

  20. Lee YS, Jun HS. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metab Clin Exp. 2014;63(1):9–19. https://doi.org/10.1016/j.metabol.2013.09.010.

    Article  CAS  PubMed  Google Scholar 

  21. Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34. https://doi.org/10.1016/j.brainres.2010.03.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience. 1997;77(1):257–70.

    Article  CAS  PubMed  Google Scholar 

  23. Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord. 2001;25(Suppl 5):S42–7. https://doi.org/10.1038/sj.ijo.0801912.

    Article  CAS  PubMed  Google Scholar 

  24. Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide 1(7-36) amide's central inhibition of feeding and peripheral inhibition of drinking are abolished by neonatal monosodium glutamate treatment. Diabetes. 1998;47(4):530–7.

    Article  CAS  PubMed  Google Scholar 

  25. Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, Vilsboll T, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56(5):965–72. https://doi.org/10.1007/s00125-013-2841-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma J, Pilichiewicz AN, Feinle-Bisset C, Wishart JM, Jones KL, Horowitz M, et al. Effects of variations in duodenal glucose load on glycaemic, insulin, and incretin responses in type 2 diabetes. Diabetic Med. 2012;29(5):604–8. https://doi.org/10.1111/j.1464-5491.2011.03496.x.

    Article  CAS  PubMed  Google Scholar 

  27. Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia. 2011;54(1):10–8. https://doi.org/10.1007/s00125-010-1896-4.

    Article  CAS  PubMed  Google Scholar 

  28. Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  29. Hojberg PV, Vilsboll T, Rabol R, Knop FK, Bache M, Krarup T, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52(2):199–207. https://doi.org/10.1007/s00125-008-1195-5.

    Article  CAS  PubMed  Google Scholar 

  30. Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes. 2003;52(2):380–6.

    Article  CAS  PubMed  Google Scholar 

  31. Mari A, Bagger JI, Ferrannini E, Holst JJ, Knop FK, Vilsboll T. Mechanisms of the incretin effect in subjects with normal glucose tolerance and patients with type 2 diabetes. PLoS One. 2013;8(9):e73154. https://doi.org/10.1371/journal.pone.0073154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes. 2010;59(5):1117–25. https://doi.org/10.2337/db09-1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feinle C, Chapman IM, Wishart J, Horowitz M. Plasma glucagon-like peptide-1 (GLP-1) responses to duodenal fat and glucose infusions in lean and obese men. Peptides. 2002;23(8):1491–5.

    Article  CAS  PubMed  Google Scholar 

  34. Seimon RV, Brennan IM, Russo A, Little TJ, Jones KL, Standfield S, et al. Gastric emptying, mouth-to-cecum transit, and glycemic, insulin, incretin, and energy intake responses to a mixed-nutrient liquid in lean, overweight, and obese males. Am J Physiol Endocrinol Metab. 2013;304(3):E294–300. https://doi.org/10.1152/ajpendo.00533.2012.

    Article  CAS  PubMed  Google Scholar 

  35. Vazquez Roque MI, Camilleri M, Stephens DA, Jensen MD, Burton DD, Baxter KL, et al. Gastric sensorimotor functions and hormone profile in normal weight, overweight, and obese people. Gastroenterology. 2006;131(6):1717–24. https://doi.org/10.1053/j.gastro.2006.10.025.

    Article  CAS  PubMed  Google Scholar 

  36. Verdich C, Toubro S, Buemann B, Lysgard Madsen J, Juul Holst J, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int J Obes Relat Metab Disord. 2001;25(8):1206–14. https://doi.org/10.1038/sj.ijo.0801655.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer-Gerspach AC, Wolnerhanssen B, Beglinger B, Nessenius F, Napitupulu M, Schulte FH, et al. Gastric and intestinal satiation in obese and normal weight healthy people. Physiol Behav. 2014;129:265–71. https://doi.org/10.1016/j.physbeh.2014.02.043.

    Article  CAS  PubMed  Google Scholar 

  38. Lugari R, Dei Cas A, Ugolotti D, Barilli AL, Camellini C, Ganzerla GC, et al. Glucagon-like peptide 1 (GLP-1) secretion and plasma dipeptidyl peptidase IV (DPP-IV) activity in morbidly obese patients undergoing biliopancreatic diversion. Horm Metab Res. 2004;36(2):111–5. https://doi.org/10.1055/s-2004-814222.

    Article  CAS  PubMed  Google Scholar 

  39. Carr RD, Larsen MO, Jelic K, Lindgren O, Vikman J, Holst JJ, et al. Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J Clin Endocrinol Metab. 2010;95(2):872–8. https://doi.org/10.1210/jc.2009-2054.

    Article  CAS  PubMed  Google Scholar 

  40. Adam TC, Westerterp-Plantenga MS. Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr. 2005;93(6):845–51.

    Article  CAS  PubMed  Google Scholar 

  41. Aulinger BA, Vahl TP, Wilson-Perez HE, Prigeon RL, D'Alessio DA. Beta-cell sensitivity to GLP-1 in healthy humans is variable and proportional to insulin sensitivity. J Clin Endocrinol Metab. 2015;100(6):2489–96. https://doi.org/10.1210/jc.2014-4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19(4):524–36. https://doi.org/10.1111/dom.12849.

    Article  CAS  PubMed  Google Scholar 

  43. Sorli C, Harashima SI, Tsoukas GM, Unger J, Karsbol JD, Hansen T, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(4):251–60. https://doi.org/10.1016/s2213-8587(17)30013-x.

    Article  CAS  PubMed  Google Scholar 

  44. Ahren B, Atkin SL, Charpentier G, Warren ML, Wilding JPH, Birch S, et al. Semaglutide induces weight loss in subjects with type 2 diabetes regardless of baseline BMI or gastrointestinal adverse events in the SUSTAIN 1 to 5 trials. Diabetes Obes Metab. 2018;20(9):2210–9. https://doi.org/10.1111/dom.13353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. Jama. 2015;314(7):687–99. https://doi.org/10.1001/jama.2015.9676.

    Article  CAS  PubMed  Google Scholar 

  46. Rosenstock J, Klaff LJ, Schwartz S, Northrup J, Holcombe JH, Wilhelm K, et al. Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care. 2010;33(6):1173–5. https://doi.org/10.2337/dc09-1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elkind-Hirsch K, Marrioneaux O, Bhushan M, Vernor D, Bhushan R. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(7):2670–8. https://doi.org/10.1210/jc.2008-0115.

    Article  CAS  PubMed  Google Scholar 

  48. Blundell J, Finlayson G, Axelsen M, Flint A, Gibbons C, Kvist T, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017;19(9):1242–51. https://doi.org/10.1111/dom.12932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context. 2015;4:212283. https://doi.org/10.7573/dic.212283.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6.

    Article  CAS  PubMed  Google Scholar 

  51. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17(9):961–9.

    Article  CAS  PubMed  Google Scholar 

  52. Pandey A, Chawla S, Guchhait P. Type-2 diabetes: current understanding and future perspectives. IUBMB Life. 2015;67(7):506–13. https://doi.org/10.1002/iub.1396.

    Article  CAS  PubMed  Google Scholar 

  53. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9. https://doi.org/10.1172/jci25102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Soukas A, Cohen P, Socci ND, Friedman JM. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 2000;14(8):963–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. https://doi.org/10.1172/jci19246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. https://doi.org/10.1172/jci19451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396(6706):77–80. https://doi.org/10.1038/23948.

    Article  CAS  PubMed  Google Scholar 

  58. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science (New York, NY). 1996;271(5249):665–8.

    Article  CAS  Google Scholar 

  59. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047–54.

    Article  CAS  PubMed  Google Scholar 

  60. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7. https://doi.org/10.1074/jbc.M101521200.

    Article  CAS  PubMed  Google Scholar 

  61. Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, et al. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911–8.

    Article  CAS  PubMed  Google Scholar 

  62. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6. https://doi.org/10.1038/nature01137.

    Article  CAS  PubMed  Google Scholar 

  63. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230–6. https://doi.org/10.1074/jbc.M200958200.

    Article  CAS  PubMed  Google Scholar 

  64. Schmitz-Peiffer C. Protein kinase C and lipid-induced insulin resistance in skeletal muscle. Ann N Y Acad Sci. 2002;967:146–57.

    Article  CAS  PubMed  Google Scholar 

  65. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277(50):48115–21. https://doi.org/10.1074/jbc.M209459200.

    Article  CAS  PubMed  Google Scholar 

  66. Shyangdan DS, Royle P, Clar C, Sharma P, Waugh N, Snaith A. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;(10):Cd006423. https://doi.org/10.1002/14651858.CD006423.pub2.

  67. Aroda VR, Bain SC, Cariou B, Piletic M, Rose L, Axelsen M, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(5):355–66. https://doi.org/10.1016/s2213-8587(17)30085-2.

    Article  CAS  PubMed  Google Scholar 

  68. Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016;24(1):15–30. https://doi.org/10.1016/j.cmet.2016.06.009.

    Article  CAS  PubMed  Google Scholar 

  69. Bentley-Lewis R, Aguilar D, Riddle MC, Claggett B, Diaz R, Dickstein K, et al. Rationale, design, and baseline characteristics in evaluation of LIXisenatide in acute coronary syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo. Am Heart J. 2015;169(5):631–8.e7. https://doi.org/10.1016/j.ahj.2015.02.002.

    Article  CAS  PubMed  Google Scholar 

  70. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Secrest MH, Udell JA, Filion KB. The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors. Trends Cardiovasc Med. 2017;27(3):194–202. https://doi.org/10.1016/j.tcm.2017.01.009.

    Article  CAS  PubMed  Google Scholar 

  72. • Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141. Randomized double-blind, placebo-controlled trial investigating semaglutide 0.5mg and 1.0mg compared to placebo when added to a patients with T2DM on standard-care regimens. Results indicated that significant reductions in rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were noted in the semaglutide treated groups.

    Article  CAS  PubMed  Google Scholar 

  73. Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol. 2018;17(1):157. https://doi.org/10.1186/s12933-018-0800-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Higgins V, Adeli K. Postprandial dyslipidemia: pathophysiology and cardiovascular disease risk assessment. EJIFCC. 2017;28(3):168–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. • Hjerpsted JB, Flint A, Brooks A, Axelsen MB, Kvist T, Blundell J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab. 2018;20(3):610–9. https://doi.org/10.1111/dom.13120. Randomized double-blind, placebo-controlled trial investigating semaglutide 1.0mg versus placebo showing significant post-prandial glucose and lipid improvements in the semaglutide treated group.

    Article  CAS  PubMed  Google Scholar 

  76. • Verges B, Charbonnel B. After the LEADER trial and SUSTAIN-6, how do we explain the cardiovascular benefits of some GLP-1 receptor agonists? Diabetes Metab. 2017;43(Suppl 1):2s3–2s12. https://doi.org/10.1016/s1262-3636(17)30067-8. A review article highlighting potential mechanisms for the independent CVD risk reductions observed with GLP-1 RA including effects on blood pressure, lipids, weight loss, blood sugar, and inflammatory marker reduction.

    Article  CAS  PubMed  Google Scholar 

  77. Jendle J, Nauck MA, Matthews DR, Frid A, Hermansen K, During M, et al. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab. 2009;11(12):1163–72. https://doi.org/10.1111/j.1463-1326.2009.01158.x.

    Article  CAS  PubMed  Google Scholar 

  78. Fu Z, Kuang HY, Hao M, Gao XY, Liu Y, Shao N. Protection of exenatide for retinal ganglion cells with different glucose concentrations. Peptides. 2012;37(1):25–31. https://doi.org/10.1016/j.peptides.2012.06.006.

    Article  CAS  PubMed  Google Scholar 

  79. Dorecka M, Siemianowicz K, Francuz T, Garczorz W, Chyra A, Klych A, et al. Exendin-4 and GLP-1 decreases induced expression of ICAM-1, VCAM-1 and RAGE in human retinal pigment epithelial cells. Pharmacol Rep. 2013;65(4):884–90.

    Article  CAS  PubMed  Google Scholar 

  80. Hernandez C, Bogdanov P, Corraliza L, Garcia-Ramirez M, Sola-Adell C, Arranz JA, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65(1):172–87. https://doi.org/10.2337/db15-0443.

    Article  CAS  PubMed  Google Scholar 

  81. Fan Y, Liu K, Wang Q, Ruan Y, Ye W, Zhang Y. Exendin-4 alleviates retinal vascular leakage by protecting the blood-retinal barrier and reducing retinal vascular permeability in diabetic Goto-Kakizaki rats. Exp Eye Res. 2014;127:104–16. https://doi.org/10.1016/j.exer.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  82. Shurter A, Genter P, Ouyang D, Ipp E. Euglycemic progression: worsening of diabetic retinopathy in poorly controlled type 2 diabetes in minorities. Diabetes Res Clin Pract. 2013;100(3):362–7. https://doi.org/10.1016/j.diabres.2013.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lachin JM, Genuth S, Cleary P, Davis MD, Nathan DM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9. https://doi.org/10.1056/nejm200002103420603.

    Article  PubMed  Google Scholar 

  84. Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) follow-on study. Diabetes Care. 2016;39(7):1089–100. https://doi.org/10.2337/dc16-0024.

    Article  CAS  Google Scholar 

  85. Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ (Clinical research ed). 2012;344:d7771. https://doi.org/10.1136/bmj.d7771.

    Article  CAS  Google Scholar 

  86. Mundil D, Cameron-Vendrig A, Husain M. GLP-1 receptor agonists: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res. 2012;9(2):95–108. https://doi.org/10.1177/1479164112441526.

    Article  PubMed  Google Scholar 

  87. Cefalu WT, Buse JB, Del Prato S, Home PD, LeRoith D, Nauck MA, et al. Beyond metformin: safety considerations in the decision-making process for selecting a second medication for type 2 diabetes management: reflections from a diabetes care editors' expert forum. Diabetes Care. 2014;37(9):2647–59. https://doi.org/10.2337/dc14-1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Garg R, Chen W, Pendergrass M. Acute pancreatitis in type 2 diabetes treated with exenatide or sitagliptin: a retrospective observational pharmacy claims analysis. Diabetes Care. 2010;33(11):2349–54. https://doi.org/10.2337/dc10-0482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wenten M, Gaebler JA, Hussein M, Pelletier EM, Smith DB, Girase P, et al. Relative risk of acute pancreatitis in initiators of exenatide twice daily compared with other anti-diabetic medication: a follow-up study. Diabetic Med. 2012;29(11):1412–8. https://doi.org/10.1111/j.1464-5491.2012.03652.x.

    Article  CAS  PubMed  Google Scholar 

  90. Dore DD, Seeger JD, Arnold Chan K. Use of a claims-based active drug safety surveillance system to assess the risk of acute pancreatitis with exenatide or sitagliptin compared to metformin or glyburide. Curr Med Res Opin. 2009;25(4):1019–27. https://doi.org/10.1185/03007990902820519.

    Article  CAS  PubMed  Google Scholar 

  91. Dore DD, Bloomgren GL, Wenten M, Hoffman C, Clifford CR, Quinn SG, et al. A cohort study of acute pancreatitis in relation to exenatide use. Diabetes Obes Metab. 2011;13(6):559–66. https://doi.org/10.1111/j.1463-1326.2011.01376.x.

    Article  CAS  PubMed  Google Scholar 

  92. Steinberg WM, Buse JB, Ghorbani MLM, Orsted DD, Nauck MA. Amylase, lipase, and acute pancreatitis in people with type 2 diabetes treated with Liraglutide: results from the LEADER randomized trial. Diabetes Care. 2017;40(7):966–72. https://doi.org/10.2337/dc16-2747.

    Article  CAS  PubMed  Google Scholar 

  93. Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology. 2010;151(4):1473–86. https://doi.org/10.1210/en.2009-1272.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Nolen-Doerr, Mary-Catherine Stockman or Ivania Rizo.

Ethics declarations

Conflict of Interest

Eric Nolen-Doerr declares that he has no conflict of interest.

Mary-Catherine Stockman declares that she has no conflict of interest.

Ivania Rizo declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolen-Doerr, E., Stockman, MC. & Rizo, I. Mechanism of Glucagon-Like Peptide 1 Improvements in Type 2 Diabetes Mellitus and Obesity. Curr Obes Rep 8, 284–291 (2019). https://doi.org/10.1007/s13679-019-00350-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-019-00350-4

Keywords

Navigation