Skip to main content
Log in

Obesity, Appetite, and the Prefrontal Cortex

  • Metabolism (CJ Billington, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obesity is a chronic illness and its prevalence is growing worldwide and numerous factors play a role in the regulation of food intake. The prefrontal cortex (PFC) is involved in high-order executive function, regulation of limbic reward regions, and the inhibition of impulsive behaviors. Understanding the role of the PFC in the control of appetite regulation may contribute to a greater understanding of the etiology of obesity and could improve weight loss outcomes.

Recent Findings

Neuroimaging studies have identified lower activation in the left dorsolateral PFC (DLPFC) in obese compared to lean individuals and others have focused on efforts to improve cognitive control in this area of the brain. The DLPFC is a critical brain area associated with appetitive control, food craving, and executive functioning, indicating a candidate target area for treatment.

Summary

Further studies are needed to advance our understanding of the relationship between obesity, appetite, and the DLPFC and provide validation for the effectiveness of novel treatments in clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the united states, 2011-2012. JAMA. 2014;311(8):806–14. https://doi.org/10.1001/jama.2014.732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stoner L, Cornwall J. Did the American Medical Association make the correct decision classifying obesity as a disease? Australas Med J. 2014;7(11):462–4. https://doi.org/10.4066/amj.2014.2281.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhurosy T, Jeewon R. Overweight and obesity epidemic in developing countries: a problem with diet, physical activity, or socioeconomic status? The Scientific World Journal. 2014;2014:964236. https://doi.org/10.1155/2014/964236.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ramachandrappa S, Farooqi IS. Genetic approaches to understanding human obesity. J Clin Invest. 2011;121(6):2080–6. https://doi.org/10.1172/JCI46044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Exp Diabetes Res. 2012;2012:19. https://doi.org/10.1155/2012/824305.

    Article  Google Scholar 

  6. Apovian CM. The causes, prevalence, and treatment of obesity revisited in 2009: what have we learned so far? Am J Clin Nutr. 2010;91(1):277s–9s. https://doi.org/10.3945/ajcn.2009.28473A.

    Article  CAS  PubMed  Google Scholar 

  7. Guyenet SJ, Schwartz MW. Clinical review: regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab. 2012;97(3):745–55. https://doi.org/10.1210/jc.2011-2525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ibrahim M, Thearle MS, Krakoff J, Gluck ME. Perceived stress and anhedonia predict short-and long-term weight change, respectively, in healthy adults. Eat Behav. 2016;21:214–9. https://doi.org/10.1016/j.eatbeh.2016.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharya R, Shen C, Sambamoorthi U. Excess risk of chronic physical conditions associated with depression and anxiety. BMC Psychiatry. 2014;14:10. https://doi.org/10.1186/1471-244x-14-10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Graham AL, Gluck ME, Votruba SB, Krakoff J, Thearle MS. Perseveration augments the effects of cognitive restraint on ad libitum food intake in adults seeking weight loss. Appetite. 2014;82:78–84. https://doi.org/10.1016/j.appet.2014.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  11. •• Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31. https://doi.org/10.1016/j.nicl.2015.03.016. Comprehensive review of neuroimaging and neuromodulation techniques, highlighting the possibility of identifying new biological markers of brain function and potential for individualized medicine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A. 1999;96(8):4569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Le DS, Pannacciulli N, Chen K, Salbe AD, Del Parigi A, Hill JO, et al. Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am J Clin Nutr. 2007;86(3):573–9.

    CAS  PubMed  Google Scholar 

  14. Le DS, Pannacciulli N, Chen K, Del Parigi A, Salbe AD, Reiman EM, et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am J Clin Nutr. 2006;84(4):725–31.

    CAS  PubMed  Google Scholar 

  15. • Xu X, Deng ZY, Huang Q, Zhang WX, Qi CZ, Huang JA. Prefrontal cortex-mediated executive function as assessed by Stroop task performance associates with weight loss among overweight and obese adolescents and young adults. Behav Brain Res. 2017;321:240–8. https://doi.org/10.1016/j.bbr.2016.12.040. Longitudinal study assessing the relationship between hemodynamic response in the prefrontal cortex during a Stroop task and weight loss. Hemodynamic responses were measured using functional near-infrared spectroscopy (fNIRS).

    Article  PubMed  Google Scholar 

  16. Fitzpatrick S, Gilbert S, Serpell L. Systematic review: are overweight and obese individuals impaired on behavioural tasks of executive functioning? Neuropsychol Rev. 2013;23(2):138–56. https://doi.org/10.1007/s11065-013-9224-7.

    Article  PubMed  Google Scholar 

  17. • Georgii C, Goldhofer P, Meule A, Richard A, Blechert J. Food craving, food choice and consumption: The role of impulsivity and sham-controlled tDCS stimulation of the right dlPFC. Physiol Behav. 2017;177:20–6. https://doi.org/10.1016/j.physbeh.2017.04.004. Randomized control trial of participants undergoing anodal, cathodal, or sham tDCS to the dorsolateral prefrontal cortex during an inhibitory control task. Participants randomized to the cathodal tDCS provided more impulsive responses during the inhibitory task as compared to the anodal group.

    Article  CAS  PubMed  Google Scholar 

  18. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, et al. Differential brain responses to satiation in obese and lean men. Diabetes. 2000;49(5):838–46.

    Article  CAS  PubMed  Google Scholar 

  19. Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE, et al. Effect of satiation on brain activity in obese and lean women. Obes Res. 2001;9(11):676–84. https://doi.org/10.1038/oby.2001.92.

    Article  CAS  PubMed  Google Scholar 

  20. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM, et al. Persistence of abnormal neural responses to a meal in postobese individuals. Int J Obes Relat Metab Disord. 2004;28(3):370–7. https://doi.org/10.1038/sj.ijo.0802558.

    Article  CAS  PubMed  Google Scholar 

  21. Le DS, Chen K, Pannacciulli N, Gluck M, Reiman EM, Krakoff J. Reanalysis of the obesity-related attenuation in the left dorsolateral prefrontal cortex response to a satiating meal using gyral regions-of-interest. J Am Coll Nutr. 2009;28(6):667–73.

    Article  PubMed  Google Scholar 

  22. • Reinhardt M, Parigi AD, Chen K, Reiman EM, Thiyyagura P, Krakoff J, et al. Deactivation of the left dorsolateral prefrontal cortex in Prader-Willi syndrome after meal consumption. Int J Obes. 2016;40(9):1360–8. https://doi.org/10.1038/ijo.2016.75. Showed meal-induced deactivation of the left DLPFC in PWS, a type of human genetic obesity.

    Article  CAS  Google Scholar 

  23. Ballard IC, Murty VP, Carter RM, MacInnes JJ, Huettel SA, Adcock RA. Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. J Neurosci. 2011;31(28):10340–6. https://doi.org/10.1523/jneurosci.0895-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32(1):20–39. https://doi.org/10.1016/j.neubiorev.2007.04.019.

    Article  CAS  PubMed  Google Scholar 

  25. Hebebrand J, Albayrak Ö, Adan R, Antel J, Dieguez C, de Jong J, et al. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev. 2014;47:295–306. https://doi.org/10.1016/j.neubiorev.2014.08.016.

    Article  PubMed  Google Scholar 

  26. Bellisle F, Drewnowski A, Anderson GH, Westerterp-Plantenga M, Martin CK. Sweetness, satiation, and satiety. J Nutr. 2012;142(6):1149s–54s. https://doi.org/10.3945/jn.111.149583.

    Article  CAS  PubMed  Google Scholar 

  27. Witbracht MG, Laugero KD, Van Loan MD, Adams SH, Keim NL. Performance on the Iowa gambling task is related to magnitude of weight loss and salivary cortisol in a diet-induced weight loss intervention in overweight women. Physiol Behav. 2012;106(2):291–7. https://doi.org/10.1016/j.physbeh.2011.04.035.

    Article  CAS  PubMed  Google Scholar 

  28. Blum K, Thanos PK, Gold MS. Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol. 2014;5:919. https://doi.org/10.3389/fpsyg.2014.00919.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang GJ, Tomasi D, Backus W, Wang R, Telang F, Geliebter A, et al. Gastric distention activates satiety circuitry in the human brain. NeuroImage. 2008;39(4):1824–31. https://doi.org/10.1016/j.neuroimage.2007.11.008.

    Article  PubMed  Google Scholar 

  30. Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring, Md). 2009;17(1):60–5. https://doi.org/10.1038/oby.2008.469.

    Article  Google Scholar 

  31. • Stice E, Yokum S. Neural vulnerability factors that increase risk for future weight gain. Psychol Bull. 2016;142(5):447–71. https://doi.org/10.1037/bul0000044. Article review on the current neural vulnerability hypotheses of weight gain and obesity.

    Article  PubMed  PubMed Central  Google Scholar 

  32. • Alonso-Alonso M, Woods SC, Pelchat M, Grigson PS, Stice E, Farooqi S, et al. Food reward system: current perspectives and future research needs. Nutr Rev. 2015;73(5):296–307. https://doi.org/10.1093/nutrit/nuv002. Article review on current neurosciene research on the food addiction hypothesis and the role of reward and hedonic aspects of the regulation of food intake.

    Article  PubMed  PubMed Central  Google Scholar 

  33. • Lapenta OM, Sierve KD, de Macedo EC, Fregni F, Boggio PS. Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite. 2014;83:42–8. https://doi.org/10.1016/j.appet.2014.08.005. Transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex (anode right/cathode left) decreased food intake in a randomized crossover experiment.

    Article  PubMed  Google Scholar 

  34. Boeka AG, Lokken KL. Neuropsychological performance of a clinical sample of extremely obese individuals. Arch Clin Neuropsychol. 2008;23(4):467–74. https://doi.org/10.1016/j.acn.2008.03.003.

    Article  PubMed  Google Scholar 

  35. Fagundo AB, de la Torre R, Jimenez-Murcia S, Aguera Z, Granero R, Tarrega S, et al. Executive functions profile in extreme eating/weight conditions: from anorexia nervosa to obesity. PLoS One. 2012;7(8):e43382. https://doi.org/10.1371/journal.pone.0043382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hege MA, Stingl KT, Kullmann S, Schag K, Giel KE, Zipfel S, et al. Attentional impulsivity in binge eating disorder modulates response inhibition performance and frontal brain networks. Int J Obes. 2015;39(2):353–60. https://doi.org/10.1038/ijo.2014.99.

    Article  CAS  Google Scholar 

  37. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70. https://doi.org/10.1038/27376.

    Article  CAS  PubMed  Google Scholar 

  38. Chang DC, Piaggi P, Burkholder JE, Votruba SB, Krakoff J, Gluck ME. Higher insulin and higher body fat via leptin are associated with disadvantageous decisions in the Iowa gambling task. Physiol Behav. 2016;167:392–8. https://doi.org/10.1016/j.physbeh.2016.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brogan A, Hevey D, O’Callaghan G, Yoder R, O'Shea D. Impaired decision making among morbidly obese adults. J Psychosom Res. 2011;70(2):189–96. https://doi.org/10.1016/j.jpsychores.2010.07.012.

    Article  PubMed  Google Scholar 

  40. Kulendran M, Borovoi L, Purkayastha S, Darzi A, Vlaev I. Impulsivity predicts weight loss after obesity surgery. Surg Obes Relat Dis. 2017;13(6):1033–40. https://doi.org/10.1016/j.soard.2016.12.031.

    Article  PubMed  Google Scholar 

  41. Alosco ML, Galioto R, Spitznagel MB, Strain G, Devlin M, Cohen R, et al. Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery. Am J Surg. 2014;207(6):870–6. https://doi.org/10.1016/j.amjsurg.2013.05.018.

    Article  PubMed  Google Scholar 

  42. Veronese N, Facchini S, Stubbs B, Luchini C, Solmi M, Manzato E, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87–94. https://doi.org/10.1016/j.neubiorev.2016.11.017.

    Article  PubMed  Google Scholar 

  43. Farr OM, Li C-sR, Mantzoros CS. Central nervous system regulation of eating: insights from human brain imaging. Metabolism. 2016;65(5):699–713. https://doi.org/10.1016/j.metabol.2016.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Price M, Lee M, Higgs S. Food-specific response inhibition, dietary restraint and snack intake in lean and overweight/obese adults: a moderated-mediation model. Inte J Obes. 2016;40(5):877–82. https://doi.org/10.1038/ijo.2015.235.

    Article  CAS  Google Scholar 

  45. • Lawrence NS, O’Sullivan J, Parslow D, Javaid M, Adams RC, Chambers CD, et al. Training response inhibition to food is associated with weight loss and reduced energy intake. Appetite. 2015;95:17–28. https://doi.org/10.1016/j.appet.2015.06.009. Randomized double-blind design, examining the effect of go/no-go training on food intake and weight loss. Participants who received four 10-min sessions of go/no-go training had reduced energy intake and reductions in rated liking of high-energy dense foods.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gluck ME, Ziker C, Schwegler M, Thearle M, Votruba SB, Krakoff J. Impaired glucose regulation is associated with poorer performance on the Stroop task. Physiol Behav. 2013;122:113–9. https://doi.org/10.1016/j.physbeh.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  47. Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. NeuroImage. 2010;52(4):1696–703. https://doi.org/10.1016/j.neuroimage.2010.05.059.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jensen CD, Duraccio KM, Carbine KA, Barnett KA, Kirwan CB. Motivational impact of palatable food correlates with functional brain responses to food images in adolescents. J Pediatr Psychol. 2017;42(5):578–87. https://doi.org/10.1093/jpepsy/jsw091.

    PubMed  Google Scholar 

  49. • Jensen CD, Kirwan CB. Functional brain response to food images in successful adolescent weight losers compared with normal-weight and overweight controls. Obesity (Silver Spring, Md). 2015;23(3):630–6. https://doi.org/10.1002/oby.21004. Adolescents with successful weight loss demonstrated greater activation in the dorsolateral prefrontal cortex compared to overweight and normal-weight controls while viewing high-energy dense food images as measured by functional magnetic resonance imaging.

    Article  Google Scholar 

  50. Brooks SJ, O’Daly OG, Uher R, Friederich HC, Giampietro V, Brammer M, et al. Differential neural responses to food images in women with bulimia versus anorexia nervosa. PLoS One. 2011;6(7):e22259. https://doi.org/10.1371/journal.pone.0022259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brooks SJ, O’Daly O, Uher R, Friederich HC, Giampietro V, Brammer M, et al. Thinking about eating food activates visual cortex with reduced bilateral cerebellar activation in females with anorexia nervosa: an fMRI study. PLoS One. 2012;7(3):e34000. https://doi.org/10.1371/journal.pone.0034000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scaife JC, Godier LR, Reinecke A, Harmer CJ, Park RJ. Differential activation of the frontal pole to high vs low calorie foods: the neural basis of food preference in anorexia nervosa? Psychiatry Res. 2016;258:44–53. https://doi.org/10.1016/j.pscychresns.2016.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Maggard MA, Shugarman LR, Suttorp M, Maglione M, Sugerman HJ, Livingston EH, et al. Meta-analysis: surgical treatment of obesity. Ann Intern Med. 2005;142(7):547–59.

    Article  PubMed  Google Scholar 

  54. Gunstad J, Strain G, Devlin MJ, Wing R, Cohen RA, Paul RH, et al. Improved memory function 12 weeks after bariatric surgery. Surg Obes Relat Dis. 2011;7(4):465–72. https://doi.org/10.1016/j.soard.2010.09.015.

    Article  PubMed  Google Scholar 

  55. Spitznagel MB, Alosco M, Strain G, Devlin M, Cohen R, Paul R, et al. Cognitive function predicts 24-month weight loss success after bariatric surgery. Surg Obes Relat Dis. 2013;9(5):765–70. https://doi.org/10.1016/j.soard.2013.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  56. •• Lowe CJ, Vincent C, Hall PA. Effects of noninvasive brain stimulation on food cravings and consumption: a meta-analytic review. Psychosom Med. 2017;79(1):2–13. https://doi.org/10.1097/psy.0000000000000368. Recent meta-analysis that reviews studies of tDCS and rTMS on eating behaviors.

    Article  PubMed  Google Scholar 

  57. McClelland J, Bozhilova N, Campbell I, Schmidt U. A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies. Eur Eat Disord Rev. 2013;21(6):436–55. https://doi.org/10.1002/erv.2256.

    Article  PubMed  Google Scholar 

  58. • Gluck ME, Alonso-Alonso M, Piaggi P, Weise CM, Jumpertz-von Schwartzenberg R, Reinhardt M, et al. Neuromodulation targeted to the prefrontal cortex induces changes in energy intake and weight loss in obesity. Obesity (Silver Spring, Md). 2015;23(11):2149–56. https://doi.org/10.1002/oby.21313. First study to show association of anodal tDCS to the LDLPFC with weight loss and decreased 3-day food intake in adults with obesity.

    Article  Google Scholar 

  59. Kekic M, McClelland J, Campbell I, Nestler S, Rubia K, David AS, et al. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings. Appetite. 2014;78:55–62. https://doi.org/10.1016/j.appet.2014.03.010.

    Article  PubMed  Google Scholar 

  60. •• Heinitz S, Reinhardt M, Piaggi P, Weise CM, Diaz E, Stinson EJ, Venti CA, Votruba SB, , Wassermann EM, Alonso-Alonso M, Krakoff J, Gluck ME. Neuromodulation directed at the prefrontal cortex of subjects with obesity reduces snack food intake and hunger in a randomized trial. Am J Clin Nutr. 2017. https://doi.org/10.3945/ajcn.117.158089. Study demonstrating decreased hunger ratings and snack food intake following 15 sessions of anodal compared to sham tDCS to the LDLPFC in individuals with obesity.

  61. • Ljubisavljevic M, Maxood K, Bjekic J, Oommen J, Nagelkerke N. Long-term effects of repeated prefrontal cortex transcranial direct current stimulation (tDCS) on food craving in normal and overweight young adults. Brain Stimul. 2016;9(6):826–33. https://doi.org/10.1016/j.brs.2016.07.002. Longitudinal study assessing the acute and long-term effects of repeated tDCS to the dorsolateral prefrontal cortex. Effects of decreased craving after both 1 and 5 sessions remained significantly reduced after 30 days but were not associated with changes in weight.

    Article  CAS  PubMed  Google Scholar 

  62. Goldman RL, Borckardt JJ, Frohman HA, O'Neil PM, Madan A, Campbell LK, et al. Prefrontal cortex transcranial direct current stimulation (tDCS) temporarily reduces food cravings and increases the self-reported ability to resist food in adults with frequent food craving. Appetite. 2011;56(3):741–6. https://doi.org/10.1016/j.appet.2011.02.013.

    Article  PubMed  Google Scholar 

  63. Alonso-Alonso M. Translating tDCS into the field of obesity: mechanism-driven approaches. Front Hum Neurosci. 2013;7:512. https://doi.org/10.3389/fnhum.2013.00512.

    PubMed  PubMed Central  Google Scholar 

  64. Montenegro RA, Okano AH, Cunha FA, Gurgel JL, Fontes EB, Farinatti PT. Prefrontal cortex transcranial direct current stimulation associated with aerobic exercise change aspects of appetite sensation in overweight adults. Appetite. 2012;58(1):333–8. https://doi.org/10.1016/j.appet.2011.11.008.

    Article  PubMed  Google Scholar 

  65. Burgess EE, Sylvester MD, Morse KE, Amthor FR, Mrug S, Lokken KL, et al. Effects of transcranial direct current stimulation (tDCS) on binge eating disorder. Int J Eat Disord. 2016;49(10):930–6. https://doi.org/10.1002/eat.22554.

    Article  PubMed  Google Scholar 

  66. Jauch-Chara K, Kistenmacher A, Herzog N, Schwarz M, Schweiger U, Oltmanns KM. Repetitive electric brain stimulation reduces food intake in humans. Am J Clin Nutr. 2014;100(4):1003–9. https://doi.org/10.3945/ajcn.113.075481.

    Article  CAS  PubMed  Google Scholar 

  67. • Eichen DM, Matheson BE, Appleton-Knapp SL, Boutelle KN. Neurocognitive treatments for eating disorders and obesity. Curr Psychiatry Rep. 2017;19(9):62. https://doi.org/10.1007/s11920-017-0813-7. Article review assessing executive function training for eating and weight disorders. Results demonstrate that cognitive remediation therapy may be beneficial for reduction of eating disorder symptomatology.

    Article  PubMed  Google Scholar 

  68. •• Jones A, Hardman CA, Lawrence N, Field M. Cognitive training as a potential treatment for overweight and obesity: a critical review of the evidence. Appetite. 2017. https://doi.org/10.1016/j.appet.2017.05.032. Compreshensive review of cognitive internventions for changing eating and related behaviors.

  69. Schumacher SE, Kemps E, Tiggemann M. Bias modification training can alter approach bias and chocolate consumption. Appetite. 2016;96:219–24. https://doi.org/10.1016/j.appet.2015.09.014.

    Article  PubMed  Google Scholar 

  70. Lyu Z, Zheng P, Jackson T. Attention disengagement difficulties among average weight women who binge eat. Eur Eat Disord Rev. 2016;24(4):286–93. https://doi.org/10.1002/erv.2438.

    Article  PubMed  Google Scholar 

  71. Boutelle KN, Monreal T, Strong DR, Amir N. An open trial evaluating an attention bias modification program for overweight adults who binge eat. J Behav Ther Exp Psychiatry. 2016;52:138–46. https://doi.org/10.1016/j.jbtep.2016.04.005.

    Article  PubMed  Google Scholar 

  72. Browning M, Holmes EA, Murphy SE, Goodwin GM, Harmer CJ. Lateral prefrontal cortex mediates the cognitive modification of attentional bias. Biol Psychiatry. 2010;67(10):919–25. https://doi.org/10.1016/j.biopsych.2009.10.031.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shafran R, Lee M, Cooper Z, Palmer RL, Fairburn CG. Attentional bias in eating disorders. Int J Eat Disord. 2007;40(4):369–80. https://doi.org/10.1002/eat.20375.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jones A, Di Lemma LC, Robinson E, Christiansen P, Nolan S, Tudur-Smith C, et al. Inhibitory control training for appetitive behaviour change: a meta-analytic investigation of mechanisms of action and moderators of effectiveness. Appetite. 2016;97:16–28. https://doi.org/10.1016/j.appet.2015.11.013.

    Article  PubMed  Google Scholar 

  75. Houben K, Jansen A. Chocolate equals stop. Chocolate-specific inhibition training reduces chocolate intake and go associations with chocolate. Appetite. 2015;87:318–23. https://doi.org/10.1016/j.appet.2015.01.005.

    Article  PubMed  Google Scholar 

  76. Veling H, Aarts H, Stroebe W. Using stop signals to reduce impulsive choices for palatable unhealthy foods. Br J Health Psychol. 2013;18(2):354–68. https://doi.org/10.1111/j.2044-8287.2012.02092.x.

    Article  PubMed  Google Scholar 

  77. Dahlgren CL, Stedal K. Cognitive remediation therapy for adolescents with anorexia nervosa-treatment satisfaction and the perception of change. Behav Sci (Basel, Switzerland). 2017;7(2). https://doi.org/10.3390/bs7020023.

  78. Raman J, Hay P, Smith E. Manualised cognitive remediation therapy for adult obesity: study protocol for a randomised controlled trial. Trials. 2014;15:426. https://doi.org/10.1186/1745-6215-15-426.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Iacovino JM, Gredysa DM, Altman M, Wilfley DE. Psychological treatments for binge eating disorder. Curr Psychiatry Rep. 2012;14(4):432–46. https://doi.org/10.1007/s11920-012-0277-8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. de Lange FP, Koers A, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW, et al. Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain. 2008;131(Pt 8):2172–80. https://doi.org/10.1093/brain/awn140.

    Article  PubMed  Google Scholar 

  81. Kennedy SH, Konarski JZ, Segal ZV, Lau MA, Bieling PJ, McIntyre RS, et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry. 2007;164(5):778–88. https://doi.org/10.1176/ajp.2007.164.5.778.

    Article  PubMed  Google Scholar 

  82. Maihofner C, Sperling W, Kaltenhauser M, Bleich S, de Zwaan M, Wiltfang J, et al. Spontaneous magnetoencephalographic activity in patients with obsessive-compulsive disorder. Brain Res. 2007;1129(1):200–5. https://doi.org/10.1016/j.brainres.2006.10.048.

    Article  PubMed  Google Scholar 

  83. Ritchey M, Dolcos F, Eddington KM, Strauman TJ, Cabeza R. Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response. J Psychiatr Res. 2011;45(5):577–87. https://doi.org/10.1016/j.jpsychires.2010.09.007.

    Article  PubMed  Google Scholar 

  84. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30. https://doi.org/10.1111/1467-9280.t01-1-01430.

    Article  PubMed  Google Scholar 

  85. Rosano C, Venkatraman VK, Guralnik J, Newman AB, Glynn NW, Launer L, et al. Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. J Gerontol Ser A Biol Sci Med Sci. 2010;65(6):639–47. https://doi.org/10.1093/gerona/glq038.

    Article  Google Scholar 

  86. Crabtree DR, Chambers ES, Hardwick RM, Blannin AK. The effects of high-intensity exercise on neural responses to images of food. Am J Clin Nutr. 2014;99(2):258–67. https://doi.org/10.3945/ajcn.113.071381.

    Article  CAS  PubMed  Google Scholar 

  87. Cornier MA, Melanson EL, Salzberg AK, Bechtell JL, Tregellas JR. The effects of exercise on the neuronal response to food cues. Physiol Behav. 2012;105(4):1028–34. https://doi.org/10.1016/j.physbeh.2011.11.023.

    Article  CAS  PubMed  Google Scholar 

  88. Evero N, Hackett LC, Clark RD, Phelan S, Hagobian TA. Aerobic exercise reduces neuronal responses in food reward brain regions. J Appl Physiol (1985). 2012;112(9):1612–9. https://doi.org/10.1152/japplphysiol.01365.2011.

    Article  Google Scholar 

  89. Schubert MM, Sabapathy S, Leveritt M, Desbrow B. Acute exercise and hormones related to appetite regulation: a meta-analysis. Sports Med. 2014;44(3):387–403. https://doi.org/10.1007/s40279-013-0120-3.

    Article  PubMed  Google Scholar 

  90. Stillman PE, Lee H, Deng X, Unnava R, Cunningham WA, Fujita K. Neurological evidence for the role of construal level in future-directed thought. Soc Cogn Affect Neurosci. 2017. https://doi.org/10.1093/scan/nsx022.

  91. Truong DQ, Magerowski G, Blackburn GL, Bikson M, Alonso-Alonso M. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines. Neuroimage Clin. 2013;2:759–66. https://doi.org/10.1016/j.nicl.2013.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  92. • McKendrick R, Parasuraman R, Ayaz H. Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Front Syst Neurosci. 2015;9:27. https://doi.org/10.3389/fnsys.2015.00027. Proposes that tDCS neuromodulation may be used in conjunction with fNIRS for assessing spatial working memory and other cognitive tests. tDCS combined with fNIRS may be a promising tool to assess the effect of tDCS in more natural settings.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hu C, Kato Y, Luo Z. Activation of human prefrontal cortex to pleasant and aversive taste using functional near-infrared spectroscopy. Food Nutr Sci. 2014;05(02):9. https://doi.org/10.4236/fns.2014.52029.

    Article  Google Scholar 

  94. Byun K, Hyodo K, Suwabe K, Ochi G, Sakairi Y, Kato M, et al. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. NeuroImage. 2014;98:336–45. https://doi.org/10.1016/j.neuroimage.2014.04.067.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marci E. Gluck.

Ethics declarations

Conflict of Interest

Marci E. Gluck, Pooja Viswanath, and Emma J. Stinson declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gluck, M.E., Viswanath, P. & Stinson, E.J. Obesity, Appetite, and the Prefrontal Cortex. Curr Obes Rep 6, 380–388 (2017). https://doi.org/10.1007/s13679-017-0289-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-017-0289-0

Keywords

Navigation