Skip to main content

Food for Thought: Reward Mechanisms and Hedonic Overeating in Obesity

Abstract

Purpose of Review

This review examines the food addiction model and the role of food hedonic pathways in the pathogenesis and treatment of obesity.

Recent Findings

The hedonic pathway interacts with the obesogenic environment to override homeostatic mechanisms to cause increase in body weight. Weight gain sustained over time leads to “upward setting” of defended level of body-fat mass. There are neurobiological and phenotypic similarities and differences between hedonic pathways triggered by food compared with other addictive substances, and the entity of food addiction remains controversial. Treatment for obesity including pharmacotherapy and bariatric surgery impacts on neural pathways governing appetite and hedonic control of food intake. The food addiction model may also have significant impact on public health policy, regulation of certain foods, and weight stigma and bias.

Summary

Recent rapid progress in delineation of food hedonic pathways advances our understanding of obesity and facilitates development of effective treatment measures against the disease.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Bray GA, Kim KK, Wilding JPH, World Obesity F. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18(7):715–23.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    O'Rahilly S, Farooqi IS. Human obesity as a heritable disorder of the central control of energy balance. Int J Obes. 2008;32(Suppl 7):S55–61.

    Article  Google Scholar 

  3. 3.

    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376(3):254–66.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868–913.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Randolph TG. The descriptive features of food addiction; addictive eating and drinking. Q J Stud Alcohol. 1956;17(2):198–224.

    CAS  PubMed  Google Scholar 

  7. 7.

    Ziauddeen H, Fletcher PC. Is food addiction a valid and useful concept? Obes Rev. 2013;14(1):19–28.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597–604.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Speakman JR, Levitsky DA, Allison DB, Bray MS, de Castro JM, Clegg DJ, et al. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis Model Mech. 2011;4(6):733–45.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Berthoud HR. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011;21(6):888–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bergstrom HC, Pinard CR. Corticolimbic circuits in learning, memory, and disease. J Neurosci Res. 2017;95(3):795–6.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 2007;30(8):375–81.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Seeley RJ, Berridge KC. The hunger games. Cell. 2015;160(5):805–6.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Yu YH, Vasselli JR, Zhang Y, Mechanick JI, Korner J, Peterli R. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes Rev. 2015;16(3):234–47.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gearhardt AN, Davis C, Kuschner R, Brownell KD. The addiction potential of hyperpalatable foods. Curr Drug Abuse Rev. 2011;4(3):140–5.

    Article  PubMed  Google Scholar 

  17. 17.

    Cameron JD, Chaput JP, Sjodin AM, Goldfield GS. Brain on fire: incentive salience, hedonic hot spots, dopamine, obesity, and other hunger games. Annu Rev Nutr. 2017.

  18. 18.

    Finlayson G. Food addiction and obesity: unnecessary medicalization of hedonic overeating. Nat Rev Endocrinol. 2017.

  19. 19.

    Lawrence NS, Hinton EC, Parkinson JA, Lawrence AD. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. NeuroImage. 2012;63(1):415–22.

    Article  PubMed  Google Scholar 

  20. 20.

    Paolini BM, Laurienti PJ, Simpson SL, Burdette JH, Lyday RG, Rejeski WJ. Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult. Front Aging Neurosci. 2015;7:70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Murdaugh DL, Cox JE, Cook EW 3rd, Weller RE. fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. NeuroImage. 2012;59(3):2709–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32(16):5549–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    McCaffery JM, Haley AP, Sweet LH, Phelan S, Raynor HA, Del Parigi A, et al. Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. Am J Clin Nutr. 2009;90(4):928–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci. 2012;13(4):279–86.

    CAS  PubMed  Google Scholar 

  25. 25.

    Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38.

    Article  PubMed  Google Scholar 

  26. 26.

    Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016;374(4):363–71.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Meule A, Gearhardt AN. Food addiction in the light of DSM-5. Nutrients. 2014;6(9):3653–71.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lerma-Cabrera JM, Carvajal F, Lopez-Legarrea P. Food addiction as a new piece of the obesity framework. Nutr J. 2016;15:5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68(8):808–16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Westwater ML, Fletcher PC, Ziauddeen H. Sugar addiction: the state of the science. Eur J Nutr. 2016;55(Suppl 2):55–69.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol. 2016;71(8):670–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    • Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale. Appetite. 2009;52(2):430–6. This study proposes a novel questionnaire to diagnose food addiction based on substance addiction criteria and has spurred research into the area of food addiction.

    Article  PubMed  Google Scholar 

  33. 33.

    Long CG, Blundell JE, Finlayson G. A systematic review of the application and correlates of YFAS-diagnosed ‘food addiction’ in humans: are eating-related ‘addictions’ a cause for concern or empty concepts? Obes Facts. 2015;8(6):386–401.

    Article  PubMed  Google Scholar 

  34. 34.

    Carter A, Hendrikse J, Lee N, Yucel M, Verdejo-Garcia A, Andrews Z, et al. The neurobiology of “food addiction” and its implications for obesity treatment and policy. Annu Rev Nutr. 2016;36:105–28.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Lent MR, Eichen DM, Goldbacher E, Wadden TA, Foster GD. Relationship of food addiction to weight loss and attrition during obesity treatment. Obesity (Silver Spring). 2014;22(1):52–5.

    Article  Google Scholar 

  36. 36.

    Sawamoto R, Nozaki T, Nishihara T, Furukawa T, Hata T, Komaki G, et al. Predictors of successful long-term weight loss maintenance: a two-year follow-up. Biopsychosoc Med. 2017;11:14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  38. 38.

    Davis C. A narrative review of binge eating and addictive behaviors: shared associations with seasonality and personality factors. Front Psychiatry. 2013;4:183.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, et al. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs. 2000;32(Suppl:i-iv):1–112.

    Article  Google Scholar 

  40. 40.

    Wang F, Simen A, Arias A, Lu QW, Zhang H. A large-scale meta-analysis of the association between the ANKK1/DRD2 Taq1A polymorphism and alcohol dependence. Hum Genet. 2013;132(3):347–58.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Smith L, Watson M, Gates S, Ball D, Foxcroft D. Meta-analysis of the association of the Taq1A polymorphism with the risk of alcohol dependency: a HuGE gene-disease association review. Am J Epidemiol. 2008;167(2):125–38.

    Article  PubMed  Google Scholar 

  42. 42.

    Benton D, Young HA. A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction? Int J Obes. 2016;40(Suppl 1):S12–21.

    CAS  Article  Google Scholar 

  43. 43.

    • Cornelis MC, Flint A, Field AE, Kraft P, Han J, Rimm EB, et al. A genome-wide investigation of food addiction. Obesity (Silver Spring). 2016;24(6):1336–41. This study involved genome-wide investigation of YFAS-diagnosed food addiction cohort and found limited similarities between food addiction and drug addiction.

    CAS  Article  Google Scholar 

  44. 44.

    Forman EM, Butryn ML. A new look at the science of weight control: how acceptance and commitment strategies can address the challenge of self-regulation. Appetite. 2015;84:171–80.

    Article  PubMed  Google Scholar 

  45. 45.

    Mason AE, Epel ES, Aschbacher K, Lustig RH, Acree M, Kristeller J, et al. Reduced reward-driven eating accounts for the impact of a mindfulness-based diet and exercise intervention on weight loss: data from the SHINE randomized controlled trial. Appetite. 2016;100:86–93.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mason AE, Epel ES, Kristeller J, Moran PJ, Dallman M, Lustig RH, et al. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: data from the SHINE randomized controlled trial. J Behav Med. 2016;39(2):201–13.

    Article  PubMed  Google Scholar 

  47. 47.

    Deckersbach T, Das SK, Urban LE, Salinardi T, Batra P, Rodman AM, et al. Pilot randomized trial demonstrating reversal of obesity-related abnormalities in reward system responsivity to food cues with a behavioral intervention. Nutr Diabetes. 2014;4:e129.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all antipsychotics result in weight gain: a meta-analysis. PLoS One. 2014;9(4):e94112.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342–62.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Vetter ML, Faulconbridge LF, Webb VL, Wadden TA. Behavioral and pharmacologic therapies for obesity. Nat Rev Endocrinol. 2010;6(10):578–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Wang GJ, Tomasi D, Volkow ND, Wang R, Telang F, Caparelli EC, et al. Effect of combined naltrexone and bupropion therapy on the brain’s reactivity to food cues. Int J Obes. 2014;38(5):682–8.

    CAS  Article  Google Scholar 

  52. 52.

    Contrave Product Information Website. [Available from: https://contrave.com/.]

  53. 53.

    De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14(5):700–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59(5):954–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bray GA. Medical treatment of obesity: the past, the present and the future. Best Pract Res Clin Gastroenterol. 2014;28(4):665–84.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Astrup A, Greenway FL, Ling W, Pedicone L, Lachowicz J, Strader CD, et al. Randomized controlled trials of the D1/D5 antagonist ecopipam for weight loss in obese subjects. Obesity (Silver Spring). 2007;15(7):1717–31.

    CAS  Article  Google Scholar 

  57. 57.

    Di Marzo V, Ligresti A, Cristino L. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes. 2009;33(Suppl 2):S18–24.

    Article  Google Scholar 

  58. 58.

    Topol EJ, Bousser MG, Fox KA, Creager MA, Despres JP, Easton JD, et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet. 2010;376(9740):517–23.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Dixon JB, Lambert EA, Lambert GW. Neuroendocrine adaptations to bariatric surgery. Mol Cell Endocrinol. 2015;418(Pt 2):143–52.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Munzberg H, Laque A, Yu S, Rezai-Zadeh K, Berthoud HR. Appetite and body weight regulation after bariatric surgery. Obes Rev. 2015;16(Suppl 1):77–90.

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ullrich J, Ernst B, Wilms B, Thurnheer M, Hallschmid M, Schultes B. The hedonic drive to consume palatable foods appears to be lower in gastric band carriers than in severely obese patients who have not undergone a bariatric surgery. Obes Surg. 2013;23(4):474–9.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Behary P, Miras AD. Food preferences and underlying mechanisms after bariatric surgery. Proc Nutr Soc. 2015;74(4):419–25.

    Article  PubMed  Google Scholar 

  63. 63.

    Dixon JB, Eaton LL, Vincent V, Michaelson R. LAP-BAND for BMI 30-40: 5-year health outcomes from the multicenter pivotal study. Int J Obes. 2016;40(2):291–8.

    CAS  Article  Google Scholar 

  64. 64.

    Sevincer GM, Konuk N, Bozkurt S, Coskun H. Food addiction and the outcome of bariatric surgery at 1-year: prospective observational study. Psychiatry Res. 2016;244:159–64.

    Article  PubMed  Google Scholar 

  65. 65.

    • Bruce AS, Bruce JM, Ness AR, Lepping RJ, Malley S, Hancock L, et al. A comparison of functional brain changes associated with surgical versus behavioral weight loss. Obesity (Silver Spring). 2014;22(2):337–43.

    Article  Google Scholar 

  66. 66.

    • Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902. This study compares the brain hedonic responses to different bariatric procedures using fMRI.

    Article  PubMed  Google Scholar 

  67. 67.

    Scholtz S, Goldstone AP, le Roux CW. Changes in reward after gastric bypass: the advantages and disadvantages. Curr Atheroscler Rep. 2015;17(10):61.

    Article  PubMed  Google Scholar 

  68. 68.

    Andrews ZB. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci. 2011;34(1):31–40.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Sanmiguel CP, Jacobs J, Gupta A, Ju T, Stains J, Coveleskie K, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017.

  70. 70.

    • King WC, Chen JY, Mitchell JE, Kalarchian MA, Steffen KJ, Engel SG, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA. 2012;307(23):2516–2525. This study examined the prevalence and factors associated with alcohol use disorders in the prospective Longitudinal Assessment of Bariatric Surgery-2 cohort.

  71. 71.

    Conason A, Teixeira J, Hsu CH, Puma L, Knafo D, Geliebter A. Substance use following bariatric weight loss surgery. JAMA Surg. 2013;148(2):145–50.

    Article  PubMed  Google Scholar 

  72. 72.

    Ostlund MP, Backman O, Marsk R, Stockeld D, Lagergren J, Rasmussen F, et al. Increased admission for alcohol dependence after gastric bypass surgery compared with restrictive bariatric surgery. JAMA Surg. 2013;148(4):374–7.

    Article  PubMed  Google Scholar 

  73. 73.

    Cuellar-Barboza AB, Frye MA, Grothe K, Prieto ML, Schneekloth TD, Loukianova LL, et al. Change in consumption patterns for treatment-seeking patients with alcohol use disorder post-bariatric surgery. J Psychosom Res. 2015;78(3):199–204.

    Article  PubMed  Google Scholar 

  74. 74.

    Woodard GA, Downey J, Hernandez-Boussard T, Morton JM. Impaired alcohol metabolism after gastric bypass surgery: a case-crossover trial. J Am Coll Surg. 2011;212(2):209–14.

    Article  PubMed  Google Scholar 

  75. 75.

    Reslan S, Saules KK, Greenwald MK, Schuh LM. Substance misuse following Roux-en-Y gastric bypass surgery. Subst Use Misuse. 2014;49(4):405–17.

    Article  PubMed  Google Scholar 

  76. 76.

    Dixon JB. Self-harm and suicide after bariatric surgery: time for action. Lancet Diabetes Endocrinol. 2016;4(3):199–200.

    Article  PubMed  Google Scholar 

  77. 77.

    Lee NM, Lucke J, Hall WD, Meurk C, Boyle FM, Carter A. Public views on food addiction and obesity: implications for policy and treatment. PLoS One. 2013;8(9):e74836.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Schulte EM, Tuttle HM, Gearhardt AN. Belief in food addiction and obesity-related policy support. PLoS One. 2016;11(1):e0147557.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Wright A, Smith KE, Hellowell M. Policy lessons from health taxes: a systematic review of empirical studies. BMC Public Health. 2017;17(1):583.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity (Silver Spring). 2009;17(5):941–64.

    Article  Google Scholar 

  81. 81.

    Latner JD, Puhl RM, Murakami JM, O'Brien KS. Food addiction as a causal model of obesity. Effects on stigma, blame, and perceived psychopathology. Appetite. 2014;77:77–82.

    Article  PubMed  Google Scholar 

  82. 82.

    Lee NM, Hall WD, Lucke J, Forlini C, Carter A. Food addiction and its impact on weight-based stigma and the treatment of obese individuals in the U.S. and Australia. Nutrients. 2014;6(11):5312–26.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Ruddock HK, Hardman CA. Food addiction beliefs amongst the lay public: what are the consequences for eating behaviour? Curr Addict Rep. 2017;4(2):110–5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John B. Dixon.

Ethics declarations

Conflict of Interest

Phong Ching Lee declares that he has no conflict of interest.

John B. Dixon has a Senior Research Fellowship with the National Health and Medical Research Council (Australia); has received compensation from Apollo Endosurgery, Bariatric Advantage, and Covidien for service as a consultant; has received compensation from iNova Pharmaceuticals for service as a consultant and guest speaker; has received compensation from Nestlé for serving as a guest speaker as well as on a scientific advisory board(s); has received compensation from Novartis for serving as a guest speaker as well as on a scientific advisory board(s); has received compensation from Novo Nordisk for service on scientific advisory boards; and has received compensation from mdBriefCase for providing assistance in the development of educational materials.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, P.C., Dixon, J.B. Food for Thought: Reward Mechanisms and Hedonic Overeating in Obesity. Curr Obes Rep 6, 353–361 (2017). https://doi.org/10.1007/s13679-017-0280-9

Download citation

Keywords

  • Obesity
  • Hedonic overeating
  • Food reward pathway
  • Energy homeostasis
  • Neural control of appetite