Skip to main content

Advertisement

Log in

Leptin as a Mediator of Obesity-Induced Hypertension

  • Metabolism (J Proietto, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Hypertension and associated cardiovascular diseases represent the most common health complication of obesity and the leading cause of morbidity and mortality in overweight and obese patients. Emerging evidence suggests a critical role for the central nervous system particularly the brain action of the adipocyte-derived hormone leptin in linking obesity and hypertension. The preserved ability of leptin to cause cardiovascular sympathetic nerve activation despite the resistance to the metabolic actions of the hormone appears essential in this pathological process. This review describes the evidence supporting the neurogenic bases for obesity-associated hypertension with a particular focus on the neuronal and molecular signaling pathways underlying leptin’s effects on sympathetic nerve activity and blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Garrison RJ et al. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med. 1987;16(2):235–51.

    Article  CAS  PubMed  Google Scholar 

  2. Holecki M, Dulawa J, Chudek J. Resistant hypertension in visceral obesity. Eur J Intern Med. 2012;23(7):643–8.

    Article  PubMed  Google Scholar 

  3. Fidan-Yaylali G et al. The association between central adiposity and autonomic dysfunction in obesity. Med Princ Pract. 2016;25:442.

    Article  PubMed  Google Scholar 

  4. Hall JE et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esler M et al. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48(5):787–96.

    Article  CAS  PubMed  Google Scholar 

  6. Neter JE et al. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42(5):878–84.

    Article  CAS  PubMed  Google Scholar 

  7. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32.

    Article  PubMed  Google Scholar 

  8. Straznicky NE et al. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metab. 2005;90(11):5998–6005.

    Article  CAS  PubMed  Google Scholar 

  9. Fortmann SP, Haskell WL, Wood PD. Effects of weight loss on clinic and ambulatory blood pressure in normotensive men. Am J Cardiol. 1988;62(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  10. Williams IL et al. Endothelial function and weight loss in obese humans. Obes Surg. 2005;15(7):1055–60.

    Article  PubMed  Google Scholar 

  11. Skinner AC et al. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med. 2015;373(14):1307–17. The work reported in this paper demonstrate the close link between obesity, hypertension and other cardiovascular risks in children.

    Article  PubMed  Google Scholar 

  12. Twig G et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):2430–40.

    Article  PubMed  Google Scholar 

  13. Hubert HB et al. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.

    Article  CAS  PubMed  Google Scholar 

  14. Kurajoh M et al. Plasma leptin level is associated with cardiac autonomic dysfunction in patients with type 2 diabetes: HSCAA study. Cardiovasc Diabetol. 2015;14:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Selvaraj S et al. Association of central adiposity with adverse cardiac mechanics: findings from the hypertension genetic epidemiology network study. Circ Cardiovasc Imaging. 2016;9(6):e004396.

    Article  PubMed  Google Scholar 

  16. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alvarez GE et al. Sympathetic neural activation in visceral obesity. Circulation. 2002;106(20):2533–6.

    Article  PubMed  Google Scholar 

  18. Lambert E et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50(5):862–8.

    Article  CAS  PubMed  Google Scholar 

  19. Grassi G et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25(4 Pt 1):560–3.

    Article  CAS  PubMed  Google Scholar 

  20. Cooper JN et al. Associations between arterial stiffness and platelet activation in normotensive overweight and obese young adults. Clin Exp Hypertens. 2014;36(3):115–22.

    Article  PubMed  Google Scholar 

  21. Robinson MR et al. Uncomplicated obesity is associated with abnormal aortic function assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Masuo K et al. Differences in mechanisms between weight loss-sensitive and -resistant blood pressure reduction in obese subjects. Hypertens Res. 2001;24(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  23. Muntzel MS et al. Cafeteria diet increases fat mass and chronically elevates lumbar sympathetic nerve activity in rats. Hypertension. 2012;60(6):1498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Armitage JA et al. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension. 2012;60(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  25. Henegar JR et al. Catheter-based radiorefrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am J Hypertens. 2014;27(10):1285–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bhatt DL et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. This study reported the finding from SIMPLICITY-3 trials showing that in patients with resistant hypertension, the effect of renal denervation is similar to sham intervention.

    Article  CAS  PubMed  Google Scholar 

  27. Shibao C et al. Autonomic contribution to blood pressure and metabolism in obesity. Hypertension. 2007;49(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  28. Simonds SE et al. Leptin mediates the increase in blood pressure associated with obesity. Cell. 2014;159(6):1404–16. This paper confirmed the critical role for leptin in mediating obesity-associated hypertension both in humans and animal models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aizawa-Abe M et al. Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest. 2000;105(9):1243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mark AL. Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R566–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim K, Burke SL, Head GA. Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension. 2013;61(3):628–34.

    Article  CAS  PubMed  Google Scholar 

  32. Mark AL et al. Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J Hypertens. 1999;17(12 Pt 2):1949–53.

    Article  CAS  PubMed  Google Scholar 

  33. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab. 1999;84(10):3686–95.

    Article  CAS  PubMed  Google Scholar 

  34. Minocci A et al. Leptin plasma concentrations are dependent on body fat distribution in obese patients. Int J Obes Relat Metab Disord. 2000;24(9):1139–44.

    Article  CAS  PubMed  Google Scholar 

  35. Van Harmelen V et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998;47(6):913–7.

    Article  PubMed  Google Scholar 

  36. Cnop M et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes. 2002;51(4):1005–15.

    Article  CAS  PubMed  Google Scholar 

  37. Cohen P et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest. 2001;108(8):1113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van de Wall E et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology. 2008;149(4):1773–85.

    Article  CAS  PubMed  Google Scholar 

  39. Rahmouni K. Cardiovascular regulation by the arcuate nucleus of the hypothalamus: neurocircuitry and signaling systems. Hypertension. 2016;67(6):1064–71.

    Article  CAS  PubMed  Google Scholar 

  40. Harlan SM et al. Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ Res. 2011;108(7):808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rahmouni K, Morgan DA. Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension. 2007;49(3):647–52.

    Article  CAS  PubMed  Google Scholar 

  42. do Carmo JM et al. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons. Hypertension. 2011;57(5):918–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lim K et al. Origin of aberrant blood pressure and sympathetic regulation in diet-induced obesity. Hypertension. 2016;68(2):491–500. This paper investigates the role of various hypothalamic regions in mediating leptin’s contribution to obesity-associated hypertension.

    Article  CAS  PubMed  Google Scholar 

  44. Marsh AJ et al. Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension. 2003;42(4):488–93.

    Article  CAS  PubMed  Google Scholar 

  45. Shih CD, Au LC, Chan JY. Differential role of leptin receptors at the hypothalamic paraventricular nucleus in tonic regulation of food intake and cardiovascular functions. J Biomed Sci. 2003;10(4):367–78.

    Article  CAS  PubMed  Google Scholar 

  46. Mark AL et al. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension. 2009;53(2):375–80.

    Article  CAS  PubMed  Google Scholar 

  47. Smith PM, Ferguson AV. Cardiovascular actions of leptin in the subfornical organ are abolished by diet-induced obesity. J Neuroendocrinol. 2012;24(3):504–10.

    Article  CAS  PubMed  Google Scholar 

  48. Young CN et al. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension. 2013;61(3):737–44.

    Article  CAS  PubMed  Google Scholar 

  49. Farooqi IS et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95.

    Article  CAS  PubMed  Google Scholar 

  50. Greenfield JR et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  51. Tallam LS et al. Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension. 2005;46(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  52. Rahmouni K et al. Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin. J Neurosci. 2003;23(14):5998–6004.

    CAS  PubMed  Google Scholar 

  53. Bates SH et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003;421(6925):856–9.

    Article  CAS  PubMed  Google Scholar 

  54. Gao Q et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci U S A. 2004;101(13):4661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harlan SM et al. Cardiovascular and sympathetic effects of disrupting tyrosine 985 of the leptin receptor. Hypertension. 2011;57(3):627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dubinion JH et al. Role of proopiomelanocortin neuron STAT3 in regulating arterial pressure and mediating the chronic effects of leptin. Hypertension. 2013;61(5):1066–74. This paper demonstrates a critical role for STAT3 signaling in POMC neurons in mediating both the metabolic and cardiovascular sympathetic effects of leptin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145(11):4880–9.

    Article  CAS  PubMed  Google Scholar 

  58. Patterson CM et al. Leptin action via LepR-b Tyr1077 contributes to the control of energy balance and female reproduction. Mol Metab. 2012;1(1–2):61–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cota D et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312(5775):927–30.

    Article  CAS  PubMed  Google Scholar 

  60. Mori H et al. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab. 2009;9(4):362–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harlan SM et al. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 2013;17(4):599–606. This is the first report to implicate hypothalamic mTORC1 in sympathetic and cardiovascular regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harlan SM, Rahmouni K. PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol Metab. 2013;2(2):69–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rahmouni K et al. Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes. 2009;58(3):536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Do Carmo JM et al. Shp2 signaling in POMC neurons is important for leptin’s actions on blood pressure, energy balance, and glucose regulation. Am J Physiol Regul Integr Comp Physiol. 2014;307(12):R1438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. do Carmo JM et al. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin. Int J Obes (Lond). 2014;38(6):775–83.

    Article  CAS  Google Scholar 

  66. Bjorbaek C et al. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell. 1998;1(4):619–25.

    Article  CAS  PubMed  Google Scholar 

  67. Pedroso JA et al. Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol Metab. 2014;3(6):608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bence KK et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12(8):917–24.

    Article  CAS  PubMed  Google Scholar 

  69. Belin de Chantemele EJ et al. Protein tyrosine phosphatase 1B, a major regulator of leptin-mediated control of cardiovascular function. Circulation. 2009;120(9):753–63.

    Article  CAS  PubMed  Google Scholar 

  70. Bruder-Nascimento T et al. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension. Pharmacol Res. 2015;102:235–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Rahmouni.

Ethics declarations

Conflict of Interest

Balyssa B. Bell and Kamal Rahmouni declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Sources of Funding

The authors’ research is supported by the US National Institutes of Health (HL084207), the American Heart Association (Award #14EIA18860041), the University of Iowa Fraternal Order of Eagles Diabetes Research Center, and the University of Iowa Center for Hypertension Research.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, B.B., Rahmouni, K. Leptin as a Mediator of Obesity-Induced Hypertension. Curr Obes Rep 5, 397–404 (2016). https://doi.org/10.1007/s13679-016-0231-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-016-0231-x

Keywords

Navigation