Skip to main content

Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts

Abstract

Trillions of microorganisms inhabit the human body, strongly colonizing the gastro-intestinal tract and outnumbering our own cells. High-throughput sequencing techniques and new bioinformatic tools have enabled scientists to extend our knowledge on the relationship between the gut microbiota and host’s physiology. Disruption of the ecological equilibrium in the gut (i.e., dysbiosis) has been associated with several pathological processes, including obesity and its related comorbidities, with diet being a strong determinant of gut microbial balance. In this review, we discuss the potential prebiotic effect of polyphenol-rich foods and extracts and how they can reshape the gut microbiota, emphasizing the novel role of the mucin-degrading bacterium Akkermansia muciniphila in their metabolic benefits.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779–86.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.

    Article  PubMed  Google Scholar 

  3. 3.

    Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. 5.

    Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol. 2015;135(1):25–30.

    Article  PubMed  Google Scholar 

  6. 6.

    Toh MC, Allen-Vercoe E. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microb Ecol Health Dis. 2015;26:26309.

    PubMed  Google Scholar 

  7. 7.

    Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Chassaing B, Gewirtz AT. Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol. 2014;42(1):49–53.

    Article  PubMed  Google Scholar 

  10. 10.

    Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut’s microbiome. Gut. 2013;62(1):146–58.

    Article  PubMed  Google Scholar 

  11. 11.

    Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  13. 13.

    Ravussin Y, Koren O, Spor A, et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring). 2012;20(4):738–47.

    CAS  Article  Google Scholar 

  14. 14.•

    Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. Provides a very convincing demonstration of obesity as a transmissible trait.

    Article  PubMed  Google Scholar 

  15. 15.

    Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2(1).

  16. 16.

    Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(Pt 17):4153–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013;17(6):883–94.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. 18.

    Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Khan MT, Nieuwdorp M, Backhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014;20(5):753–60.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Teixeira TF, Collado MC, Ferreira CL, et al. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012;32(9):637–47.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15(4):474–81.

    Article  PubMed  Google Scholar 

  22. 22.

    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    PubMed Central  Article  PubMed  Google Scholar 

  23. 23.

    Hester CM, Jala VR, Langille MG, et al. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J Gastroenterol WJG. 2015;21(9):2759–69.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    David LA, Materna AC, Friedman J, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15(7):R89.

    PubMed Central  Article  PubMed  Google Scholar 

  25. 25.

    David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. 26.

    Dore J, Blottiere H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–9.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6.

    CAS  PubMed  Google Scholar 

  28. 28.

    Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–72.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. 29.

    Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991;70(6):443–59.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. 32.

    Fernandes J, Su W, Rahat-Rozenbloom S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. 33.

    den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.

    Article  Google Scholar 

  34. 34.

    Lin HV, Frassetto A, Kowalik Jr EJ, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. 35.

    Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  36. 36.

    den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015.

  37. 37.

    De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1–2):84–96.

    Article  PubMed  Google Scholar 

  38. 38.

    Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    PubMed Central  Article  PubMed  Google Scholar 

  39. 39.

    Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  40. 40.

    Demigne C, Morand C, Levrat MA, et al. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr. 1995;74(2):209–19.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Sakakibara S, Yamauchi T, Oshima Y, et al. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006;344(2):597–604.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  46. 46.

    Bosi E, Molteni L, Radaelli MG, et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49(12):2824–7.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Secondulfo M, Iafusco D, Carratu R, et al. Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2004;36(1):35–45.

    CAS  Google Scholar 

  48. 48.

    Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  49. 49.

    Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.

    PubMed Central  Article  PubMed  Google Scholar 

  50. 50.

    Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  51. 51.

    Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  52. 52.

    Shah SH, Crosslin DR, Haynes CS, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55(2):321–30.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  53. 53.

    Lips MA, Van Klinken JB, van Harmelen V, et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care. 2014;37(12):3150–6.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Strober W, Asano N, Fuss I, et al. Cellular and molecular mechanisms underlying NOD2 risk-associated polymorphisms in Crohn’s disease. Immunol Rev. 2014;260(1):249–60.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90–7.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Luck H, Tsai S, Chung J, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21(4):527–42.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Morimoto A, Ohno Y, Tatsumi Y, et al. Effects of healthy dietary pattern and other lifestyle factors on incidence of diabetes in a rural Japanese population. Asia Pac J Clin Nutr. 2012;21(4):601–8.

    CAS  PubMed  Google Scholar 

  60. 60.

    Bauer F, Beulens JW, van der AD, et al. Dietary patterns and the risk of type 2 diabetes in overweight and obese individuals. Eur J Nutr. 2013;52(3):1127–34.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Eshak ES, Iso H, Mizoue T, et al. Soft drink, 100% fruit juice, and vegetable juice intakes and risk of diabetes mellitus. Clin Nutr. 2013;32(2):300–8.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Cushnie TP, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011;38(2):99–107.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Anhê FF, Desjardins Y, Pilon G, et al. Polyphenols and type 2 diabetes: a prospective review. Pharm Nutr. 2013;1(4):105–14.

    Google Scholar 

  64. 64.

    Choy YY, Jaggers GK, Oteiza PI, et al. Bioavailability of intact proanthocyanidins in the rat colon after ingestion of grape seed extract. J Agric Food Chem. 2013;61(1):121–7.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Felgines C, Krisa S, Mauray A, et al. Radiolabelled cyanidin 3-O-glucoside is poorly absorbed in the mouse. Br J Nutr. 2010;103(12):1738–45.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S–42.

    CAS  PubMed  Google Scholar 

  67. 67.••

    Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2014:gutjnl-2014-307142. Provides the first demonstration that the beneficial metabolic effects of a cranberry extract in obese mice are associated with an increased presence of Akkermansia in the gut microbiota .

  68. 68.•

    Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome. Diabetes. 2015. Confirms the evidence for the prebiotic effect of polyphenol-rich extracts on Akkermansia.

  69. 69.

    Duda-Chodak A, Tarko T, Satora P, et al. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54(3):325–41.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  70. 70.

    Kemperman RA, Gross G, Mondot S, et al. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res Int. 2013;53(2):659–69.

    CAS  Article  Google Scholar 

  71. 71.

    Guglielmetti S, Fracassetti D, Taverniti V, et al. Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. J Agric Food Chem. 2013;61(34):8134–40.

    Article  PubMed  Google Scholar 

  72. 72.

    Lacombe A, Tadepalli S, Hwang CA, et al. Phytochemicals in lowbush wild blueberry inactivate Escherichia coli O157:H7 by damaging its cell membrane. Foodborne Pathog Dis. 2013;10(11):944–50.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Choy YY, Quifer-Rada P, Holstege DM, et al. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct. 2014;5(9):2298–308.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Noratto GD, Garcia-Mazcorro JF, Markel M, et al. Carbohydrate-free peach (Prunus persica) and plum (Prunus domestica) juice affects fecal microbial ecology in an obese animal model. PLoS One. 2014;9(7):e101723.

    PubMed Central  Article  PubMed  Google Scholar 

  75. 75.

    Etxeberria U, Arias N, Boque N, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015.

  76. 76.

    Derrien M, Collado MC, Ben-Amor K, et al. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008;74(5):1646–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  77. 77.

    Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  78. 78.

    Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.

    CAS  Article  PubMed  Google Scholar 

  79. 79.••

    Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71. The authors demonstrated the causal role of Akkermansia in ameliorating gut homeostasis, metabolic endotoxemia and insulin sensitivity in diet-induced obese mice.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  80. 80.

    Pierre JF, Heneghan AF, Feliciano RP, et al. Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. JPEN J Parenter Enteral Nutr. 2013;37(3):401–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  81. 81.

    Georgiades P, Pudney PD, Rogers S, et al. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins. PLoS One. 2014;9(8):e105302.

    PubMed Central  Article  PubMed  Google Scholar 

  82. 82.

    Derrien M, Van Baarlen P, Hooiveld G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011;2:166.

    PubMed Central  Article  PubMed  Google Scholar 

  83. 83.•

    Lukovac S, Belzer C, Pellis L, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio. 2014;5(4). By using gut organoids, the authors provide valuable clues of potential mechanisms of action of Akkermansia to modulate host’s physiology.

  84. 84.

    Lipson S, Gordon R, Ozen F, et al. Cranberry and grape juices affect tight junction function and structural integrity of rotavirus-infected monkey kidney epithelial cell monolayers. Food Environ Virol. 2011;3(1):46–54.

    Google Scholar 

  85. 85.

    Goodrich KM, Fundaro G, Griffin LE, et al. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats. Nutr Res. 2012;32(10):787–94.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Suzuki T, Hara H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J Nutr. 2009;139(5):965–74.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:11.

    Google Scholar 

  89. 89.

    Wagner Mackenzie B, Waite DW, Taylor MW. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol. 2015;6.

  90. 90.

    Kuczynski J, Lauber CL, Walters WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2012;13(1):47–58.

    CAS  Article  Google Scholar 

  91. 91.

    Mande SS, Mohammed MH, Ghosh TS. Classification of metagenomic sequences: methods and challenges. Brief Bioinform. 2012;13(6):669–81.

    Article  PubMed  Google Scholar 

  92. 92.

    Thomas T, Gilbert J, Meyer F. Metagenomics—a guide from sampling to data analysis. Microb Inform Exp. 2012;2(1):3.

    PubMed Central  Article  PubMed  Google Scholar 

  93. 93.

    Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol. 2015;13(6):360–72.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Cardona F, Andrés-Lacueva C, Tulipani S, et al. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013;24(8):1415–22.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Dudonné S, Varin TV, Anhê FF, et al. Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice. Pharm Nutr. (0).

  96. 96.

    Consortium THMP. A framework for human microbiome research. Nature. 2012;486(7402):215–21.

    Article  Google Scholar 

  97. 97.

    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  98. 98.

    Bäckhed F, Fraser Claire M, Ringel Y, et al. Defining a healthy human Gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22.

    Article  PubMed  Google Scholar 

  99. 99.

    Goodman AL, Kallstrom G, Faith JJ, et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci. 2011;108(15):6252–7.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  100. 100.

    Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.

    Article  PubMed  Google Scholar 

  101. 101.

    Huggett J, Laver T, Tamisak S, et al. Considerations for the development and application of control materials to improve metagenomic microbial community profiling. Accred Qual Assur. 2013;18(2):77–83.

    Article  Google Scholar 

  102. 102.

    Huttenhower C, Knight R, Brown CT, et al. Advancing the microbiome research community. Cell. 2014;159(2):227–30.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Fernando F. Anhê, Thibault V. Varin, Mélanie Le Barz, Yves Desjardins, Emile Levy, Denis Roy, and André Marette declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Marette.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anhê, F.F., Varin, T.V., Le Barz, M. et al. Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Curr Obes Rep 4, 389–400 (2015). https://doi.org/10.1007/s13679-015-0172-9

Download citation

Keywords

  • Prebiotics
  • Polyphenols
  • Obesity
  • Insulin resistance
  • Akkermansia