Evacuation modeling: a case study on linear and nonlinear network flow models

Abstract

We present a nonlinear traffic flow network model that is coupled to gaseous hazard information for evacuation planning. This model is evaluated numerically against a linear network flow model for different objective functions that are relevant for evacuation problems. A numerical study shows the influence of the underlying evacuation models on the evacuation time as well as the exit strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahuja R, Mananti T, Orlin J (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Upper Saddle River

    Google Scholar 

  2. Bazzan AL, Klügl F (2014) A review on agent-based technology for traffic and transportation. Knowl Eng Rev 29(03):375–403

    Article  Google Scholar 

  3. Borrmann A, Kneidl A, Köster G, Ruzika S, Thiemann M (2012) Bidirectional coupling of macroscopic and microscopic pedestrian evacuation models. Saf Sc 50(8):1695–1703

    Article  Google Scholar 

  4. Burkard R, Dlaska K, Klinz B (1993) The quickest flow problem. Math Methods Oper Res 37:31–58

    Article  Google Scholar 

  5. Chalmet L, Francis R, Saunders P (1982) Network models for building evacuation. Fire Technol 18(1):90–113

    Article  Google Scholar 

  6. Chattaraj U, Seyfried A, Chakroborty P (2009) Comparison of pedestrian fundamental diagram across cultures. Adv Complex Syst 12(03):393–405

    Article  Google Scholar 

  7. Choi W, Hamacher H, Tufekci S (1988) Modeling of building evacuation problems by network flows with side constraints. Eur J Oper Res 35(1):98–110

    Article  Google Scholar 

  8. Coclite G, Garavello M, Piccoli B (2005) Traffic flow on a road network. SIAM J Math Anal 36(6):1862–1886

    Article  Google Scholar 

  9. Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. In: Mathematical proceedings of the Cambridge Philosophical Society,vol 43. Cambridge Univ Press, pp 50–67

  10. Dietrich F, Köster G, Seitz M, von Sivers I (2014) Bridging the gap: from cellular automata to differential equation models for pedestrian dynamics. J Comput Sci 5(5):841–846

    Article  Google Scholar 

  11. Fleischer L, Tardos É (1998) Efficient continuous-time dynamic network flow algorithms. Oper Res Lett 23(3–5):71–80

    Article  Google Scholar 

  12. Garavello M, Goatin P (2012) The Cauchy problem at a node with buffer. Discr Contin Dyn Syst Ser A (DCDS-A) 32(6):1915–1938

    Article  Google Scholar 

  13. Göttlich S, Kolb O, Kühn S (2014) Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Netw Heterogen Med 9:315–334

  14. Göttlich S, Kühn S, Ohst J, Ruzika S, Thiemann M (2011) Evacuation dynamics influenced by spreading hazardous material. Netw Heterogen Med (NHM) 6(3):443–464

    Article  Google Scholar 

  15. Graat E, Midden C, Bockholts P (1999) Complex evacuation; effects of motivation level and slope of stairs on emergency egress time in a sports stadium. Saf Sci 31(2):127–141

    Article  Google Scholar 

  16. Gwynne S, Galea E, Owen M, Lawrence P, Filippidis L (1999) A review of the methodologies used in evacuation modelling. Fire Mater 23:383–388

    Article  Google Scholar 

  17. Hamacher H, Heller S, Köster G, Klein W (2010) A sandwich approach for evacuation time bounds. In: Proceedings of the 5th international conference on pedestrian and evacuation dynamics

  18. Hamacher H, Klamroth K (2000) Linear and network optimization problems—Lineare und Netzwerk Optimierungsprobleme. Vieweg, Braunschweig

    Book  Google Scholar 

  19. Hamacher H, Tjandra S (2002) Mathematical modelling of evacuation problems-a state of the art. In: Schreckenberger M, Sharma S (eds) Pedestrian and evacuation dynamics. Springer, Berlin, pp 227–266

    Google Scholar 

  20. Helbing D (1991) A mathematical model for the behavior of pedestrians. J Behav Sci 36(4):298–310

    Article  Google Scholar 

  21. Helbing D, Schreckenberg M (1999) Cellular automata simulating experimental properties of traffic flow. Phys Rev E 59:R2505–R2508

    Article  Google Scholar 

  22. Herty M, Klar A (2003) Modeling, simulation, and optimization of traffic flow networks. SIAM J Sci Comput 25(3):1066–1087

    Article  Google Scholar 

  23. Herty M, Lebacque JP, Moutari S (2009) A novel model for intersections of vehicular traffic flow. Netw Heterogen Med (NHM) 4(4):813–826

    Article  Google Scholar 

  24. Hoogendoorn S, Bovy P (2000) Gas-kinetic modeling and simulation of pedestrian flows. Transp Res Rec J Transp Res Board (1710):28–36

  25. Hughes R (2002) A continuum theory for the flow of pedestrians. Transp Res Part B 36:507–535

    Article  Google Scholar 

  26. Jiang G, Levy D, Lin C, Osher S, Tadmor E (1998) High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J Numer Anal 35(6):2147–2168

    Article  Google Scholar 

  27. Johansson F, Peterson A, Tapani A (2014) Local performance measures of pedestrian traffic. Public Transp 6(1–2):159–183

    Article  Google Scholar 

  28. Klüpfel H, Schreckenberg M, Meyer-König T (2005) Models for crowd movement and egress simulation. In: Traffic and Granular Flow ’03, pp 357–372. Springer

  29. Kneidl A, Thiemann M, Bormann A, Ruzika S, Hamacher H, Köster G, Rank E (2010) Bidirectional coupling of macroscopic and microscopic approaches for pedestrian behavior prediction. In: Proceedings of the 5th international conference on pedestrian and evacuation dynamics

  30. Kolb O (2011) Simulation and optimization of gas and water supply networks. PhD Thesis, Technische Universität Darmstadt

  31. Köster G, Hartmann D, Klein W (2011) Microscopic pedestrian simulations: From passenger exchange times to regional evacuation. In: Operations research proceedings 2010, pp 571–576. Springer

  32. Krumke S, Noltemeier H (2005) Graphentheorische Konzepte und Algorithmen. B.G. Teubner, Stuttgart

    Book  Google Scholar 

  33. Kühn S (2015) Continuous traffic flow models and their applications. Dr, Hut, Verlag

    Google Scholar 

  34. LeVeque R (1992) Numerical methods for conservation laws, 2nd edn. Birkhäuser Verlag, Basel, Boston, Berlin

    Book  Google Scholar 

  35. Nagel K, Flötteröd G (2012) Agent-based traffic assignment: Going from trips to behavioural travelers. In: Travel behaviour research in an evolving world–selected papers from the 12th international conference on travel behaviour research, pp 261–294

  36. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. Journal de physique I 2(12):2221–2229

    Article  Google Scholar 

  37. Pandey G, Rao KR, Mohan D (2015) A review of cellular automata model for heterogeneous traffic conditions. In: Traffic and Granular Flow’13, Springer, pp 471–478

  38. Rosen J, Sun SZ, Xue GL (1991) Algorithms for the quickest path problem and the enumeration of quickest paths. Comput Oper Res 18(6):579–584

    Article  Google Scholar 

  39. Schadschneider A, Klingsch W, Klüpfel H, Kretz T, Rogsch C, Seyfried A (2009) Evacuation dynamics: empirical results, modeling and applications. In: Meyers B (ed) Encyclopedia of complexity and system science. Springer, New York, NY, pp 3142–3176

    Chapter  Google Scholar 

  40. Seyfried A, Steffen B, Lippert T (2006) Basics of modelling the pedestrian flow. Phys A Stat Mech Appl 368(1):232–238

    Article  Google Scholar 

  41. Southworth F (1991) Regional evacuation modeling: a state-of-the-art review. In: ORNL/TAM-11740. Oak Ridge National Laboratory, Energy Division, Oak Ridge, TN

  42. Tian J, Treiber M, Zhu C, Jia B, Li H (2014) Cellular automaton model with non-hypothetical congested steady state reproducing the three-phase traffic flow theory. In: Cellular automata, Springer, pp 610–619

  43. von Sivers I, Templeton A, Köster G, Drury J, Philippides A (2014) Humans do not always act selfishly: social identity and helping in emergency evacuation simulation. Transp Res Proc 2:585–593

    Article  Google Scholar 

  44. Zanlungo F, Ikeda T, Kanda T (2011) Social force model with explicit collision prediction. EPL (Europhys Lett) 93(6):68,005

    Article  Google Scholar 

Download references

Acknowledgments

The work of S. Kühn and J. P. Ohst was supported by Stiftung Rheinland-Pfalz für Innovation, Project EvaC, FKZ 989. S. Ruzika gratefully acknowledges support by the German Federal Ministry of Education and Research (BMBF), Reference Number 13N12825. This work was also financially supported by the German Academic Exchange Service (DAAD) project “Transport network modeling and analysis” (Project-ID 57049018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kühn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Göttlich, S., Kühn, S., Ohst, J.P. et al. Evacuation modeling: a case study on linear and nonlinear network flow models. EURO J Comput Optim 4, 219–239 (2016). https://doi.org/10.1007/s13675-015-0055-6

Download citation

Keywords

  • Evacuation models
  • Dynamic network flows
  • Optimization

Mathematics Subject Classification

  • 90B10
  • 90C35
  • 90B20