EURO Journal on Computational Optimization

, Volume 4, Issue 3–4, pp 219–239 | Cite as

Evacuation modeling: a case study on linear and nonlinear network flow models

  • Simone Göttlich
  • Sebastian KühnEmail author
  • Jan Peter Ohst
  • Stefan Ruzika
Original Paper


We present a nonlinear traffic flow network model that is coupled to gaseous hazard information for evacuation planning. This model is evaluated numerically against a linear network flow model for different objective functions that are relevant for evacuation problems. A numerical study shows the influence of the underlying evacuation models on the evacuation time as well as the exit strategies.


Evacuation models Dynamic network flows Optimization 

Mathematics Subject Classification

90B10 90C35 90B20 



The work of S. Kühn and J. P. Ohst was supported by Stiftung Rheinland-Pfalz für Innovation, Project EvaC, FKZ 989. S. Ruzika gratefully acknowledges support by the German Federal Ministry of Education and Research (BMBF), Reference Number 13N12825. This work was also financially supported by the German Academic Exchange Service (DAAD) project “Transport network modeling and analysis” (Project-ID 57049018).


  1. Ahuja R, Mananti T, Orlin J (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Upper Saddle RiverGoogle Scholar
  2. Bazzan AL, Klügl F (2014) A review on agent-based technology for traffic and transportation. Knowl Eng Rev 29(03):375–403CrossRefGoogle Scholar
  3. Borrmann A, Kneidl A, Köster G, Ruzika S, Thiemann M (2012) Bidirectional coupling of macroscopic and microscopic pedestrian evacuation models. Saf Sc 50(8):1695–1703CrossRefGoogle Scholar
  4. Burkard R, Dlaska K, Klinz B (1993) The quickest flow problem. Math Methods Oper Res 37:31–58CrossRefGoogle Scholar
  5. Chalmet L, Francis R, Saunders P (1982) Network models for building evacuation. Fire Technol 18(1):90–113CrossRefGoogle Scholar
  6. Chattaraj U, Seyfried A, Chakroborty P (2009) Comparison of pedestrian fundamental diagram across cultures. Adv Complex Syst 12(03):393–405CrossRefGoogle Scholar
  7. Choi W, Hamacher H, Tufekci S (1988) Modeling of building evacuation problems by network flows with side constraints. Eur J Oper Res 35(1):98–110CrossRefGoogle Scholar
  8. Coclite G, Garavello M, Piccoli B (2005) Traffic flow on a road network. SIAM J Math Anal 36(6):1862–1886CrossRefGoogle Scholar
  9. Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. In: Mathematical proceedings of the Cambridge Philosophical Society,vol 43. Cambridge Univ Press, pp 50–67Google Scholar
  10. Dietrich F, Köster G, Seitz M, von Sivers I (2014) Bridging the gap: from cellular automata to differential equation models for pedestrian dynamics. J Comput Sci 5(5):841–846CrossRefGoogle Scholar
  11. Fleischer L, Tardos É (1998) Efficient continuous-time dynamic network flow algorithms. Oper Res Lett 23(3–5):71–80CrossRefGoogle Scholar
  12. Garavello M, Goatin P (2012) The Cauchy problem at a node with buffer. Discr Contin Dyn Syst Ser A (DCDS-A) 32(6):1915–1938CrossRefGoogle Scholar
  13. Göttlich S, Kolb O, Kühn S (2014) Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Netw Heterogen Med 9:315–334Google Scholar
  14. Göttlich S, Kühn S, Ohst J, Ruzika S, Thiemann M (2011) Evacuation dynamics influenced by spreading hazardous material. Netw Heterogen Med (NHM) 6(3):443–464CrossRefGoogle Scholar
  15. Graat E, Midden C, Bockholts P (1999) Complex evacuation; effects of motivation level and slope of stairs on emergency egress time in a sports stadium. Saf Sci 31(2):127–141CrossRefGoogle Scholar
  16. Gwynne S, Galea E, Owen M, Lawrence P, Filippidis L (1999) A review of the methodologies used in evacuation modelling. Fire Mater 23:383–388CrossRefGoogle Scholar
  17. Hamacher H, Heller S, Köster G, Klein W (2010) A sandwich approach for evacuation time bounds. In: Proceedings of the 5th international conference on pedestrian and evacuation dynamicsGoogle Scholar
  18. Hamacher H, Klamroth K (2000) Linear and network optimization problems—Lineare und Netzwerk Optimierungsprobleme. Vieweg, BraunschweigCrossRefGoogle Scholar
  19. Hamacher H, Tjandra S (2002) Mathematical modelling of evacuation problems-a state of the art. In: Schreckenberger M, Sharma S (eds) Pedestrian and evacuation dynamics. Springer, Berlin, pp 227–266Google Scholar
  20. Helbing D (1991) A mathematical model for the behavior of pedestrians. J Behav Sci 36(4):298–310CrossRefGoogle Scholar
  21. Helbing D, Schreckenberg M (1999) Cellular automata simulating experimental properties of traffic flow. Phys Rev E 59:R2505–R2508CrossRefGoogle Scholar
  22. Herty M, Klar A (2003) Modeling, simulation, and optimization of traffic flow networks. SIAM J Sci Comput 25(3):1066–1087CrossRefGoogle Scholar
  23. Herty M, Lebacque JP, Moutari S (2009) A novel model for intersections of vehicular traffic flow. Netw Heterogen Med (NHM) 4(4):813–826CrossRefGoogle Scholar
  24. Hoogendoorn S, Bovy P (2000) Gas-kinetic modeling and simulation of pedestrian flows. Transp Res Rec J Transp Res Board (1710):28–36Google Scholar
  25. Hughes R (2002) A continuum theory for the flow of pedestrians. Transp Res Part B 36:507–535CrossRefGoogle Scholar
  26. Jiang G, Levy D, Lin C, Osher S, Tadmor E (1998) High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J Numer Anal 35(6):2147–2168CrossRefGoogle Scholar
  27. Johansson F, Peterson A, Tapani A (2014) Local performance measures of pedestrian traffic. Public Transp 6(1–2):159–183CrossRefGoogle Scholar
  28. Klüpfel H, Schreckenberg M, Meyer-König T (2005) Models for crowd movement and egress simulation. In: Traffic and Granular Flow ’03, pp 357–372. SpringerGoogle Scholar
  29. Kneidl A, Thiemann M, Bormann A, Ruzika S, Hamacher H, Köster G, Rank E (2010) Bidirectional coupling of macroscopic and microscopic approaches for pedestrian behavior prediction. In: Proceedings of the 5th international conference on pedestrian and evacuation dynamicsGoogle Scholar
  30. Kolb O (2011) Simulation and optimization of gas and water supply networks. PhD Thesis, Technische Universität DarmstadtGoogle Scholar
  31. Köster G, Hartmann D, Klein W (2011) Microscopic pedestrian simulations: From passenger exchange times to regional evacuation. In: Operations research proceedings 2010, pp 571–576. SpringerGoogle Scholar
  32. Krumke S, Noltemeier H (2005) Graphentheorische Konzepte und Algorithmen. B.G. Teubner, StuttgartCrossRefGoogle Scholar
  33. Kühn S (2015) Continuous traffic flow models and their applications. Dr, Hut, VerlagGoogle Scholar
  34. LeVeque R (1992) Numerical methods for conservation laws, 2nd edn. Birkhäuser Verlag, Basel, Boston, BerlinCrossRefGoogle Scholar
  35. Nagel K, Flötteröd G (2012) Agent-based traffic assignment: Going from trips to behavioural travelers. In: Travel behaviour research in an evolving world–selected papers from the 12th international conference on travel behaviour research, pp 261–294Google Scholar
  36. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. Journal de physique I 2(12):2221–2229CrossRefGoogle Scholar
  37. Pandey G, Rao KR, Mohan D (2015) A review of cellular automata model for heterogeneous traffic conditions. In: Traffic and Granular Flow’13, Springer, pp 471–478Google Scholar
  38. Rosen J, Sun SZ, Xue GL (1991) Algorithms for the quickest path problem and the enumeration of quickest paths. Comput Oper Res 18(6):579–584CrossRefGoogle Scholar
  39. Schadschneider A, Klingsch W, Klüpfel H, Kretz T, Rogsch C, Seyfried A (2009) Evacuation dynamics: empirical results, modeling and applications. In: Meyers B (ed) Encyclopedia of complexity and system science. Springer, New York, NY, pp 3142–3176CrossRefGoogle Scholar
  40. Seyfried A, Steffen B, Lippert T (2006) Basics of modelling the pedestrian flow. Phys A Stat Mech Appl 368(1):232–238CrossRefGoogle Scholar
  41. Southworth F (1991) Regional evacuation modeling: a state-of-the-art review. In: ORNL/TAM-11740. Oak Ridge National Laboratory, Energy Division, Oak Ridge, TNGoogle Scholar
  42. Tian J, Treiber M, Zhu C, Jia B, Li H (2014) Cellular automaton model with non-hypothetical congested steady state reproducing the three-phase traffic flow theory. In: Cellular automata, Springer, pp 610–619Google Scholar
  43. von Sivers I, Templeton A, Köster G, Drury J, Philippides A (2014) Humans do not always act selfishly: social identity and helping in emergency evacuation simulation. Transp Res Proc 2:585–593CrossRefGoogle Scholar
  44. Zanlungo F, Ikeda T, Kanda T (2011) Social force model with explicit collision prediction. EPL (Europhys Lett) 93(6):68,005CrossRefGoogle Scholar

Copyright information

© EURO - The Association of European Operational Research Societies 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MannheimMannheimGermany
  2. 2.University of Koblenz-LandauKoblenzGermany

Personalised recommendations