Abstract
In this paper, we present the software Parallel AdjaceNcy Decomposition Algorithm (PANDA), an efficient implementation of the vertex and facet enumeration problem for polyhedra. The software is based on the double description method. Special features are the possibility to employ the so-called adjacency decomposition, the option of doing computations in exact integer arithmetic, the exploitation of symmetry information and the easy usability of parallel hardware. With computational experiments, we demonstrate the effectiveness of the software.
Similar content being viewed by others
References
Avis D (1998) Computational experience with the reverse search vertex enumeration algorithm. Optim Methods Softw 10:107–124
Avis D (2000) lrs: a revised implementation of the reverse search vertex enumeration algorithm. In: Kalai G, Ziegler G (eds) Polytopes–combinatorics and computation. Birkhäuser, Basel, pp 177–198
bwGRiD: member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg) (2014). http://www.bw-grid.de
Christof T (1997) Low-dimensional 0/1-polytopes and branch-and-cut in combinatorial optimization. Shaker, Aachen
Christof T, Löbel A (2009) Polyhedron representation transformation algorithm. http://comopt.ifi.uni-heidelberg.de/software/PORTA/index.html
Christof T, Reinelt G (1996) Combinatorial optimization and small polytopes. Top 4(1):1–53
Fukuda K, Prodon A (1996) Double description method revisited. Combinatorics and computer science (Brest, 1995), vol 1120., Lecture notes in computer scienceSpringer, Berlin, pp 91–111
Galli L, Letchford A (2010) Small bipartite subgraph polytopes. Oper Res Lett 38(5):337–340
Gawrilow E, Joswig M (2000) Polymake: a framework for analyzing convex polytopes. In: Kalai G, Ziegler G (eds) Polytopes—combinatorics and computation. Birkhäuser, Basel, pp 43–74
Heismann O, Hildenbrandt A, Silvestri F, Reinelt G, Borndörfer R (2013) HUHFA: a framework for facet classification. Technical Report, Heidelberg University
Minkowski H (1896) Geometrie der Zahlen. Teubner, Leipzig
Motzkin T, Raiffa H, Thompson G, Thrall R (1953) The double description method. In: Kuhn H, Tucker A (eds) Contributions to the theory of games II. Princeton University Press, Princeton
Rehn T (2010) Polyhedral description conversion up to symmetries. Diploma Thesis, Otto von Guericke University, Magdeburg
The MPI Forum (1993) MPI: a message passing interface. In: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing’93. ACM, New York, pp 878–883
Weyl H (1935) Elementare Theorie der konvexen Polyeder. Comment Math Helv 7:290–306
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lörwald, S., Reinelt, G. PANDA: a software for polyhedral transformations. EURO J Comput Optim 3, 297–308 (2015). https://doi.org/10.1007/s13675-015-0040-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13675-015-0040-0