Skip to main content
Log in

PANDA: a software for polyhedral transformations

  • Original Paper
  • Published:
EURO Journal on Computational Optimization

Abstract

In this paper, we present the software Parallel AdjaceNcy Decomposition Algorithm (PANDA), an efficient implementation of the vertex and facet enumeration problem for polyhedra. The software is based on the double description method. Special features are the possibility to employ the so-called adjacency decomposition, the option of doing computations in exact integer arithmetic, the exploitation of symmetry information and the easy usability of parallel hardware. With computational experiments, we demonstrate the effectiveness of the software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avis D (1998) Computational experience with the reverse search vertex enumeration algorithm. Optim Methods Softw 10:107–124

    Article  MathSciNet  MATH  Google Scholar 

  • Avis D (2000) lrs: a revised implementation of the reverse search vertex enumeration algorithm. In: Kalai G, Ziegler G (eds) Polytopes–combinatorics and computation. Birkhäuser, Basel, pp 177–198

    Google Scholar 

  • bwGRiD: member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg) (2014). http://www.bw-grid.de

  • Christof T (1997) Low-dimensional 0/1-polytopes and branch-and-cut in combinatorial optimization. Shaker, Aachen

    MATH  Google Scholar 

  • Christof T, Löbel A (2009) Polyhedron representation transformation algorithm. http://comopt.ifi.uni-heidelberg.de/software/PORTA/index.html

  • Christof T, Reinelt G (1996) Combinatorial optimization and small polytopes. Top 4(1):1–53

    Article  MathSciNet  MATH  Google Scholar 

  • Fukuda K, Prodon A (1996) Double description method revisited. Combinatorics and computer science (Brest, 1995), vol 1120., Lecture notes in computer scienceSpringer, Berlin, pp 91–111

    Chapter  Google Scholar 

  • Galli L, Letchford A (2010) Small bipartite subgraph polytopes. Oper Res Lett 38(5):337–340

    Article  MathSciNet  MATH  Google Scholar 

  • Gawrilow E, Joswig M (2000) Polymake: a framework for analyzing convex polytopes. In: Kalai G, Ziegler G (eds) Polytopes—combinatorics and computation. Birkhäuser, Basel, pp 43–74

    Google Scholar 

  • Heismann O, Hildenbrandt A, Silvestri F, Reinelt G, Borndörfer R (2013) HUHFA: a framework for facet classification. Technical Report, Heidelberg University

  • Minkowski H (1896) Geometrie der Zahlen. Teubner, Leipzig

    Google Scholar 

  • Motzkin T, Raiffa H, Thompson G, Thrall R (1953) The double description method. In: Kuhn H, Tucker A (eds) Contributions to the theory of games II. Princeton University Press, Princeton

    Google Scholar 

  • Rehn T (2010) Polyhedral description conversion up to symmetries. Diploma Thesis, Otto von Guericke University, Magdeburg

  • The MPI Forum (1993) MPI: a message passing interface. In: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing’93. ACM, New York, pp 878–883

  • Weyl H (1935) Elementare Theorie der konvexen Polyeder. Comment Math Helv 7:290–306

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Reinelt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lörwald, S., Reinelt, G. PANDA: a software for polyhedral transformations. EURO J Comput Optim 3, 297–308 (2015). https://doi.org/10.1007/s13675-015-0040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13675-015-0040-0

Keywords

Mathematics Subject Classification

Navigation