EURO Journal on Computational Optimization

, Volume 3, Issue 4, pp 297–308 | Cite as

PANDA: a software for polyhedral transformations

  • Stefan Lörwald
  • Gerhard ReineltEmail author
Original Paper


In this paper, we present the software Parallel AdjaceNcy Decomposition Algorithm (PANDA), an efficient implementation of the vertex and facet enumeration problem for polyhedra. The software is based on the double description method. Special features are the possibility to employ the so-called adjacency decomposition, the option of doing computations in exact integer arithmetic, the exploitation of symmetry information and the easy usability of parallel hardware. With computational experiments, we demonstrate the effectiveness of the software.


Polyhedra Facet enumeration Vertex enumeration 

Mathematics Subject Classification

52Bxx 90C27 


  1. Avis D (1998) Computational experience with the reverse search vertex enumeration algorithm. Optim Methods Softw 10:107–124MathSciNetCrossRefzbMATHGoogle Scholar
  2. Avis D (2000) lrs: a revised implementation of the reverse search vertex enumeration algorithm. In: Kalai G, Ziegler G (eds) Polytopes–combinatorics and computation. Birkhäuser, Basel, pp 177–198Google Scholar
  3. bwGRiD: member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg) (2014).
  4. Christof T (1997) Low-dimensional 0/1-polytopes and branch-and-cut in combinatorial optimization. Shaker, AachenzbMATHGoogle Scholar
  5. Christof T, Löbel A (2009) Polyhedron representation transformation algorithm.
  6. Christof T, Reinelt G (1996) Combinatorial optimization and small polytopes. Top 4(1):1–53MathSciNetCrossRefzbMATHGoogle Scholar
  7. Fukuda K, Prodon A (1996) Double description method revisited. Combinatorics and computer science (Brest, 1995), vol 1120., Lecture notes in computer scienceSpringer, Berlin, pp 91–111CrossRefGoogle Scholar
  8. Galli L, Letchford A (2010) Small bipartite subgraph polytopes. Oper Res Lett 38(5):337–340MathSciNetCrossRefzbMATHGoogle Scholar
  9. Gawrilow E, Joswig M (2000) Polymake: a framework for analyzing convex polytopes. In: Kalai G, Ziegler G (eds) Polytopes—combinatorics and computation. Birkhäuser, Basel, pp 43–74Google Scholar
  10. Heismann O, Hildenbrandt A, Silvestri F, Reinelt G, Borndörfer R (2013) HUHFA: a framework for facet classification. Technical Report, Heidelberg UniversityGoogle Scholar
  11. Minkowski H (1896) Geometrie der Zahlen. Teubner, LeipzigGoogle Scholar
  12. Motzkin T, Raiffa H, Thompson G, Thrall R (1953) The double description method. In: Kuhn H, Tucker A (eds) Contributions to the theory of games II. Princeton University Press, PrincetonGoogle Scholar
  13. Rehn T (2010) Polyhedral description conversion up to symmetries. Diploma Thesis, Otto von Guericke University, MagdeburgGoogle Scholar
  14. The MPI Forum (1993) MPI: a message passing interface. In: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing’93. ACM, New York, pp 878–883Google Scholar
  15. Weyl H (1935) Elementare Theorie der konvexen Polyeder. Comment Math Helv 7:290–306MathSciNetCrossRefGoogle Scholar

Copyright information

© EURO - The Association of European Operational Research Societies 2015

Authors and Affiliations

  1. 1.Institut für InformatikUniversität HeidelbergHeidelbergGermany

Personalised recommendations