Skip to main content

Advertisement

Log in

Applications of Stem Cell Therapy and Adipose-Derived Stem Cells for Skin Repair

  • Hot Topic
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this article, we summed up the different types of stem cells which are present in the skin and the role of adipose-derived stem cells (ADSCs) in providing various anti-aging properties.

Recent Findings

Adipose-derived stem cells (ADSCs) can be utilised in numerous unbelievable ways like in skin regeneration, soft tissue augmentation, anti-aging therapy, curing wrinkled skin and even in skin whitening. ADSCs prove to be useful even in cosmetic surgeries where it increases the success rate dramatically with the fusion of fat grafts and lipo-injections.

Summary

We sum up the various other related properties of ADSCs like angiogenesis, plastic surgery and cancer treatment and their applications in curing skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APM:

Arrector pili muscle

ADSC:

Adipose stem cells

ADSC-CM:

Adipose stem cells culture medium

ADRC:

Adipose-derived regenerative cells

ECM:

Extracellular matrix

ESC:

Epidermal stem cells

IRS:

Inner root sheath

HSC:

Haematopoietic stem cells

ORS:

Outer root sheath

UV:

Ultraviolet

WBC:

White blood cells

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Slominski A, Wortsman J, Paus R, Elias PM, Tobin DJ, Feingold KR. Skin as an endocrine organ: implications for its function. Drug Discov Today: Dis Mech. 2008;5(2):e137–44.

    Article  Google Scholar 

  2. Hashizume H. Skin aging and dry skin. J Dermatol. 2004;31(8):603–9.

    Article  PubMed  Google Scholar 

  3. Hwang KA, Yi BR, Choi KC. Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations. Lab Anim Res. 2011;27(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med. 2005;11(10):1026–8.

    Article  CAS  PubMed  Google Scholar 

  5. Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ. 2013;55(3):309–18.

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;10(21):605–31.

    Article  CAS  Google Scholar 

  7. Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: theme and variations. Curr Opin Cell Biol. 2004;16(6):693–9.

    Article  CAS  PubMed  Google Scholar 

  8. Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther. 2019;10(1):1–4. In this paper, the authors discussed different characteristics of epidermal stem cell, their functions and the underlying mechanism of wound healing. The clinical potential of epidermal stem cell in improving wound healing is also discussed in this paper.

  9. Lavker RM, Sun TT. Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci. 2000;97(25):13473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waters JM, Richardson GD, Jahoda CA. Hair follicle stem cells. Semin Cell Dev Biol. 2007;18(2):245–54.

    Article  CAS  PubMed  Google Scholar 

  11. Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3(1):33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mull AN, Zolekar A, Wang YC. Understanding melanocyte stem cells for disease modeling and regenerative medicine applications. Int J Mol Sci. 2015;16(12):30458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa SI. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416(6883):854–60.

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen DT, Orgill DP, Murphy GF. The pathophysiologic basis for wound healing and cutaneous regeneration. In Biomaterials for treating skin loss. 2009;(pp. 25–57). Woodhead Publishing.

  15. Geueke A, Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Exp Dermatol. 2021;30(4):588–97.

    Article  CAS  PubMed  Google Scholar 

  16. Niemann C, Horsley V. Development and homeostasis of the sebaceous gland. Semin Cell Dev Biol. 2012;23:928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oh M, Nör JE. The perivascular niche and self-renewal of stem cells. Front Physiol. 2015;2(6):367.

    Google Scholar 

  18. Li Z, Hu X, Zhong JF. Mesenchymal stem cells: characteristics, function, and application. 2019. In this paper, the various clinical applications of mesenchymal stem cells in skin wound healing, cartilage and bone repair, neuronal regeneration and immune disorder treatment have been discussed.

  19. Caplan AI. Mesenchymal stem cells in regenerative medicine. In Principles of Regenerative Medicine 2019;(pp. 219–227). Academic Press. In this paper, the author describes the different extraction methods for mesenchymal stem cells. The author also describes the various preclinical and clinical applications of these stem cells in regenerative medicine.

  20. Bydlowski SP, Levy D, Ruiz JM, Pereira J. Hematopoietic stem cell niche: role in normal and malignant hematopoiesis. Stem Cell Biology in Normal Life and Diseases. 2013;8:17.

    Google Scholar 

  21. Hawley RG, Ramezani A, Hawley TS. Hematopoietic stem cells. Methods Enzymol. 2006;1(419):149–79.

    Article  CAS  Google Scholar 

  22. Lavker RM, Sun TT. Epidermal stem cells. J Investig Dermatol. 1983;81(1):S121–7.

    Article  Google Scholar 

  23. Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 2012;30(3):257–62.

    Article  PubMed  Google Scholar 

  24. McGowan JE. A Journal of the Pathological Society of Great Britain and Ireland. 1993.

  25. Regnier M, Patwardhan A, Scheynius A, Schmidt R. Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Compu. 1998;36(6):821–4.

    Article  CAS  Google Scholar 

  26. Zelickson AS, Mottaz JH. Epidermal dendritic cells: a quantitative study. Arch Dermatol. 1968;98(6):652–9.

    Article  CAS  PubMed  Google Scholar 

  27. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P. Langerhans cells–dendritic cells of the epidermis. APMIS. 2003;111(7–8):725–40.

    Article  CAS  PubMed  Google Scholar 

  28. Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol. 1981;1(69):271–318.

    Article  Google Scholar 

  29. Wang ZL, He RZ, Tu B, He JS, Cao X, Xia HS, Ba HL, Wu S, Peng C, Xiong K. Drilling combined with adipose-derived stem cells and bone morphogenetic protein-2 to treat femoral head epiphyseal necrosis in juvenile rabbits. Current Med Sci. 2018;38(2):277–88.

    Article  CAS  Google Scholar 

  30. Teng M, Huang Y, Zhang H. Application of stems cells in wound healing—an update. Wound Repair Regen. 2014;22(2):151–60.

    Article  PubMed  Google Scholar 

  31. Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA, Simons BD, Blanpain C. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489:257–62.

    Article  CAS  PubMed  Google Scholar 

  32. Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol. 2009;19(3):R132–42.

    Article  CAS  PubMed  Google Scholar 

  33. Nakatake Y, Hoshikawa M, Asaki T, Kassai Y, Itoh N. Identification of a novel fibroblast growth factor, FGF-22, preferentially expressed in the inner root sheath of the hair follicle. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 2001;1517(3):460–3.

  34. Garcin CL, Ansell DM, Headon DJ, Paus R. Hardman MJ Hair follicle bulge stem cells appear dispensable for the acute phase of wound re-epithelialization. Stem Cells. 2016;34(5):1377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang CP, Fu XB. Therapeutic potential of stem cells in skin repair and regeneration. Chinese Journal of Traumatology (English Edition). 2008;11(4):209–21.

    Article  CAS  Google Scholar 

  36. Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445(7130):843–50.

    Article  CAS  PubMed  Google Scholar 

  37. Lang D, Mascarenhas JB, Shea CR. Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol. 2013;31(2):166–78.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res. 2000;254(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  39. Singh SK, Nizard C, Kurfurst R, Bonte F, Schnebert S, Tobin DJ. The silver locus product (Silv/gp100/Pmel17) as a new tool for the analysis of melanosome transfer in human melanocyte–keratinocyte co-culture. Exp Dermatol. 2008;17(5):418–26.

    Article  PubMed  Google Scholar 

  40. Veniaminova NA, Grachtchouk M, Doane OJ, Peterson JK, Quigley DA, Lull MV, Pyrozhenko DV, Nair RR, Patrick MT, Balmain A, Dlugosz AA. Niche-specific factors dynamically regulate sebaceous gland stem cells in the skin. Dev Cell. 2019;4;51(3):326–40. The study defines different factors which act together for modulating oil-secreting sebaceous glands (SGs) stem cells and thus critically regulate skin functions. The study also demonstrated the integration of diverse niche signals by sebaceous glands.

  41. Frances D, Niemann C. Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Dev Biol. 2012;363(1):138–46.

    Article  CAS  PubMed  Google Scholar 

  42. Jaks V, Kasper M, Toftgård R. The hair follicle—a stem cell zoo. Exp Cell Res. 2010;316(8):1422–8.

    Article  CAS  PubMed  Google Scholar 

  43. Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013.

  44. Luo G, Cheng W, He W, Wang X, Tan J, Fitzgerald M, Li X, Wu J. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound repair and regeneration. 2010;18(5):506–13.

    Article  PubMed  Google Scholar 

  45. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226(6):507–20.

    Article  CAS  Google Scholar 

  46. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241:58–62.

    Article  CAS  PubMed  Google Scholar 

  47. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:1442–6.

    Article  CAS  PubMed  Google Scholar 

  48. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 2006;169(2):338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tolar J, McGrath JA. Augmentation of cutaneous wound healing by pharmacologic mobilization of endogenous bone marrow stem cells. J Investig Dermatol. 2014;134(9):2312–4.

    Article  CAS  PubMed  Google Scholar 

  50. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab. 2000;11(8):327–32.

    Article  CAS  PubMed  Google Scholar 

  51. Choi JS, Choi YC, Kim JD, Kim EJ, Lee HY, Kwon IC, Cho YW. Adipose tissue: a valuable resource of biomaterials for soft tissue engineering. Macromol Res. 2014;22(9):932–47.

    Article  CAS  Google Scholar 

  52. Cushman SW. Structure-function relationships in the adipose cell I. Ultrastructure of the isolated adipose cell. J Cell Biol. 1970;46(2):326–41.

  53. Pénicaud L, Cousin B, Leloup C, Lorsignol A, Casteilla L. The autonomic nervous system, adipose tissue plasticity, and energy balance. Nutrition. 2000;16(10):903–8.

    Article  PubMed  Google Scholar 

  54. Casteilla L, Pénicaud L, Cousin B, Calise D. Choosing an adipose tissue depot for sampling. Methods in molecular biology (Clifton, NJ). 2008;456:23–38.

    Article  Google Scholar 

  55. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proceedings of the Nutrition Society. 2001;60(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  56. Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48(6):1253–62.

  57. Alkhouli N, Mansfield J, Green E, Bell J, Knight B, Liversedge N, Tham JC, Welbourn R, Shore AC, Kos K, Winlove CP. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am J Physiol Endocrinol Metab. 2013;305(12):E1427–35.

    Article  CAS  PubMed  Google Scholar 

  58. Mariman EC, Wang P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci. 2010;67(8):1277–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zuk PA, Zhu MI, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  60. Zuk P. Adipose-derived stem cells in tissue regeneration: a review. International Scholarly Res Notices. 2013.

  61. Brown SA, Levi B, Lequex C, Wong VW, Mojallal A, Longaker MT. Basic science review on adipose tissue for clinicians. Plast Reconstr Surg. 2010;126(6):1936–46.

    Article  CAS  PubMed  Google Scholar 

  62. Kim WS, Park SH, Ahn SJ, Kim HK, Park JS, Lee GY, Kim KJ, Whang KK, Kang SH, Park BS, Sung JH. Whitening effect of adipose-derived stem cells: a critical role of TGF-β1. Biol Pharm Bull. 2008;31(4):606–10.

    Article  CAS  PubMed  Google Scholar 

  63. Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K. Analysis of an expression profile of genes in the human adipose tissue. Gene. 1997;190(2):227–35.

    Article  CAS  PubMed  Google Scholar 

  64. Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H. Survey and mechanism of skin depigmenting and lightening agents. Phytotherapy Research: an International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2006;20(11):921–34.

    Article  CAS  Google Scholar 

  65. Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg. 2008;34(9):1178–85.

    CAS  PubMed  Google Scholar 

  66. Körner A, Pawelek J. Activation of melanoma tyrosinase by a cyclic AMP-dependent protein kinase in a cell-free system. Nature. 1977;267(5610):444–7.

    Article  PubMed  Google Scholar 

  67. Rzepka Z, Buszman E, Beberok A, Wrześniok D. From tyrosine to melanin: signaling pathways and factors regulating melanogenesis. Postepy Hig Med Dosw(Online). 2016;30(70):695–708.

    Article  Google Scholar 

  68. Kim DW, Jeon BJ, Hwang NH, Kim MS, Park SH, Dhong ES, Yoon ES, Lee BI. Adipose-derived stem cells inhibit epidermal melanocytes through an interleukin-6–mediated mechanism. Plast Reconstr Surg. 2014;134(3):470–80.

    Article  CAS  PubMed  Google Scholar 

  69. Sjerobabski-Masnec I, Šitum M. Skin aging. Acta Clin Croat. 2010;49(4):515–8.

    PubMed  Google Scholar 

  70. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.

    Article  CAS  PubMed  Google Scholar 

  71. Kim HH, Lee MJ, Lee SR, Kim KH, Cho KH, Eun HC, Chung JH. Augmentation of UV-induced skin wrinkling by infrared irradiation in hairless mice. Mech Ageing Dev. 2005;126(11):1170–7.

    Article  CAS  PubMed  Google Scholar 

  72. Rittié L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev. 2002;1(4):705–20.

    Article  PubMed  Google Scholar 

  73. Coleman SR. Structural fat grafts: the ideal filler? Clin Plast Surg. 2001;28(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  74. Zhu M, Zhou Z, Chen Y, Schreiber R, Ransom JT, Fraser JK, Hedrick MH, Pinkernell K, Kuo HC. Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg. 2010;64(2):222–8.

    Article  CAS  PubMed  Google Scholar 

  75. Domergue S, Psomas C, Yachouh J, Lesnik A, Reynes J, Goudot P, Jammet P. Fat microinfiltration autografting for facial restructuring in HIV patients. J Cranio-Maxillofac Surg. 2006;34(8):484–8.

    Article  Google Scholar 

  76. Carpaneda CA, Ribeiro MT. Percentage of graft viability versus injected volume in adipose autotransplants. Aesthetic Plast Surg. 1994;18(1):17–9.

    Article  CAS  PubMed  Google Scholar 

  77. Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014;22(3):313–25.

    Article  PubMed  Google Scholar 

  78. Park HY, Kwon HM, Lim HJ, Hong BK, Lee JY, Park BE, Jang YS, Cho SY, Kim HS. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  79. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(18):3209–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–43.

    Article  PubMed  Google Scholar 

  81. Dunham LJ. Cancer in man at site of prior benign lesion of skin or mucous membrane: a review. Can Res. 1972;32(7):1359–74.

    CAS  Google Scholar 

  82. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, Chi JT, Rijn MV, Botstein D, Brown PO, Liu ET. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biology. 2004;2(2):e7.

  83. Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12(3):170–80.

    Article  CAS  PubMed  Google Scholar 

  84. King A, Balaji S, Keswani SG, Crombleholme TM. The role of stem cells in wound angiogenesis. Adv Wound Care. 2014;3(10):614–25.

    Article  Google Scholar 

  85. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. In J Investig Dermatol Symp Proc. 2000;(Vol. 5, No. 1, pp. 40–46).

  86. Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002;82(3):673–700.

    Article  CAS  PubMed  Google Scholar 

  87. Fatima F, Garrett J. Resolvin D1 interferes with several of the required steps for angiogenesis. The FASEB J. 2019;33(S1):527–1. In this paper, the authors demonstrated that the treatment of endothelium with Resolvin D1 slows the migration of endothelial cells and also decreased endothelial cell proliferation. It inhibits the essential steps of angiogenesis and thus have therapeutic potential for cancer treatment.

  88. Mundel TM, Kalluri R. Type IV collagen-derived angiogenesis inhibitors. Microvasc Res. 2007;74(2–3):85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C. Human skin stem cells and the ageing process. Exp Gerontol. 2008;43(11):986–97.

    Article  CAS  PubMed  Google Scholar 

  90. Moriya J, Minamino T. Angiogenesis, cancer, and vascular aging. Frontiers in Cardiovascular Medicine. 2017;24(4):65.

    Article  CAS  Google Scholar 

  91. Senger DR, Davis GE. Angiogenesis. Cold Spring Harbor perspectives in biology. 2011;3(8):a005090.

  92. Kelly RI, Pearse R, Bull RH, Leveque JL, de Rigal J, Mortimer PS. The effects of aging on the cutaneous microvasculature. J Am Acad Dermatol. 1995;33(5):749–56.

    Article  CAS  PubMed  Google Scholar 

  93. Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauder DN. Photoaging: mechanisms and repair. J Am Acad Dermatol. 2006;55(1):1–9.

    Article  PubMed  Google Scholar 

  94. Worrede A, Douglass SM, Weeraratna AT. The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression. J Clin Invest. 2021;131(6). In this paper, the authors provide an overview of UVR impact on the skin microenvironment and its effect on intrinsic and extrinsic aging altering fundamental processes such as extracellular matrix deposition, melanogenesis, inflammation and immune response.

  95. Chung JH, Eun HC. Angiogenesis in skin aging and photoaging. J Dermatol. 2007;34(9):593–600.

    Article  CAS  PubMed  Google Scholar 

  96. Ichihashi M, Ando H, Yoshida M, Niki Y, Matsui M. Photoaging of the skin. Anti-aging medicine. 2009;6(6):46–59.

    Article  Google Scholar 

  97. Bernstein EF, Brown DB, Schwartz MD, Kaidbey K, Ksenzenko SM. The polyhydroxy acid gluconolactone protects against ultraviolet radiation in an in vitro model of cutaneous photoaging. Dermatol Surg. 2004;30(2):189–96.

    PubMed  Google Scholar 

  98. Ganz T, Lehrer RI. Defensins. Curr Opin Immunol. 1994;6(4):584–9.

    Article  CAS  PubMed  Google Scholar 

  99. Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC. Human defensins. J Mol Med. 2005;83(8):587–95.

    Article  CAS  PubMed  Google Scholar 

  100. Van Kilsdonk JW, Jansen PA, Van Den Bogaard EH, Bos C, Bergers M, Zeeuwen PL, Schalkwijk J. The effects of human beta-defensins on skin cells in vitro. Dermatology. 2017;233(2–3):155–63.

    Article  PubMed  CAS  Google Scholar 

  101. Suarez-Carmona M, Hubert P, Delvenne P, Herfs M. Defensins: “Simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev. 2015;26(3):361–70.

    Article  CAS  PubMed  Google Scholar 

  102. Philpott MP. Defensins and acne. Mol Immunol. 2003;40(7):457–62.

    Article  CAS  PubMed  Google Scholar 

  103. Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human β-defensins in allergic diseases. Clin Exp Allergy. 2016;46(12):1522–30.

    Article  CAS  PubMed  Google Scholar 

  104. Salibian AA, Widgerow AD, Abrouk M, Evans GR. Stem cells in plastic surgery: a review of current clinical and translational applications. Arch Plast Surg. 2013;40(6):666.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Eremia S, Newman N. Long-term follow-up after autologous fat grafting: analysis of results from 116 patients followed at least 12 months after receiving the last of a minimum of two treatments. Dermatol Surg. 2000;26(12):1150–8.

    Article  CAS  PubMed  Google Scholar 

  106. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg. 2020;44(4):1258–65. In this paper, the authors developed a novel strategy known as cell-assisted lipotransfer (CAL) in which autologous adipose-derived stem cells (ASCs) were used in combination with lipoinjection. CAL was found to be effective and safe for soft tissue augmentation and superior to conventional lipoinjection.

  107. Gir P, Oni G, Brown SA, Mojallal A, Rohrich RJ. Human adipose stem cells: current clinical applications. Plast Reconstr Surg. 2012;129:1277–90.

    Article  CAS  PubMed  Google Scholar 

  108. Zhu M, Dong Z, Gao J, Liao Y, Xue J, Yuan Y, Liu L, Chang Q, Lu F. Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells. Cell Transplant. 2015;24:49–62.

    Article  CAS  PubMed  Google Scholar 

  109. Combellack EJ, Jessop ZM, Naderi N, Griffin M, Dobbs T, Ibrahim A, Evans S, Burnell S, Doak SH, Whitaker IS. Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surg. 2016;5:227–41.

    PubMed  PubMed Central  Google Scholar 

  110. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med. 1995;333(26):1757–63.

    Article  CAS  PubMed  Google Scholar 

  111. Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria-Petit A, Filmus J, Mansour SJ, Ahn NG, Kerbel RS. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Can Res. 2000;60(2):490–8.

    CAS  Google Scholar 

  112. Bagchi M, Kim LA, Boucher J, Walshe TE, Kahn CR, D’Amore PA. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J. 2013;27(8):3257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. d’Onofrio A, Cerrai P. A bi-parametric model for the tumour angiogenesis and antiangiogenesis therapy. Math Comput Model. 2009;49(5–6):1156–63.

    Article  Google Scholar 

  114. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Uma Kabra for reviewing their manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Araiz Ali has done literature search, analyse and wrote manuscript. Jeena Gupta has reviewed, formatted and approve the final version of the manuscript.

Corresponding author

Correspondence to Jeena Gupta.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Gupta, J. Applications of Stem Cell Therapy and Adipose-Derived Stem Cells for Skin Repair. Curr Derm Rep 11, 120–130 (2022). https://doi.org/10.1007/s13671-022-00357-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-022-00357-6

Keywords

Navigation