Skip to main content

Advertisement

Log in

Updates on Immunotherapy for the Treatment of Skin Cancer

  • Immunology (D Lee, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Skin cancer is the most common malignancy in the USA, arising when mutated cells escape the host’s natural immune surveillance. Immunotherapy helps boost the host’s immune system, augmenting the antitumor response. Given the ability of the immune system to evolve with a tumor’s evasive maneuvers, it is not surprising that immunotherapy has demonstrated durable clinical benefit in patients with cancer, including certain types of skin cancers. Significant progress has been made with the recent development of immunotherapy for skin cancers.

Recent Findings

Here, we review the literature on immunotherapies used in the treatment of skin cancer, including immune checkpoint inhibitors, interferon, interleukin-2, BCG, talimogene laherparepvec, and imiquimod. Immune checkpoint inhibitors, which block CTLA-4 and PD-1 signaling pathways, have improved overall survival in patients with metastatic melanoma. The combination of nivolumab and ipilimumab has yielded higher overall survival rates than either agent alone, but at the price of higher rates of immune-related adverse events. In 2017, a PD-L1 inhibitor, avelumab, became the first FDA-approved treatment for patients with metastatic Merkel cell carcinoma.

Summary

Since 2011, new immunotherapy treatments, including CTLA-4, PD-1, and PD-L1 inhibitors, have become the mainstay of treatment for many advanced skin cancers, supplanting chemotherapy for first-line treatment of metastatic melanoma and Merkel cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol. 2015;151(10):1081–6.

    Article  Google Scholar 

  2. American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society; 2018.

    Google Scholar 

  3. American Cancer Society. Key Statistics for Merkel Cell Carcinoma. Available from: https://www.cancer.org/cancer/merkel-cell-skin-cancer/about/key-statistics.html [Updated May 23, 2016. Cited March 18, 2018].

  4. Schadendorf D, Lebbé C, Zur Hausen A, et al. Merkel cell carcinoma: epidemiology, prognosis, therapy and unmet medical needs. Eur J Cancer. 2017;71:53–69.

    Article  Google Scholar 

  5. Kaufman HL, Kirkwood JM, Hodi FS, Agarwala S, Amatruda T, Bines SD, et al. The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat Rev Clin Oncol. 2013;10(10):588–98.

    Article  CAS  Google Scholar 

  6. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  Google Scholar 

  7. Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.

    Article  CAS  Google Scholar 

  8. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94.

    Article  CAS  Google Scholar 

  9. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7.

    Article  CAS  Google Scholar 

  10. Schadendorf D, Wolchok JD, Hodi FS, Chiarion-Sileni V, Gonzalez R, Rutkowski P, et al. Efficacy and safety outcomes in patients with advanced melanoma who discontinued treatment with nivolumab and ipilimumab because of adverse events: a pooled analysis of randomized phase II and III trials. J Clin Oncol. 2017;35:3807–14.

    Article  CAS  Google Scholar 

  11. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018. https://doi.org/10.1001/jamaoncol.2018.3923.

  12. Thompson JA, Schneider BJ, Brahmer J, et al. Management of immunotherapy-related toxicities, Version 2.2018, NCCN clinical practice guidelines in oncology. Available from: https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf [Updated September 19, 2018. Cited October 12, 2018].

  13. National Cancer Institute. Bethesda, MD: National Institutes of Health. A to Z list of cancer drugs. Available from: http://www.cancer.gov/about-cancer/treatment/drugs. Published January 7, 2015. [Updated December 15, 2017. Cited March 11, 2018].

  14. Schachter J, Ribas A, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–62.

    Article  CAS  Google Scholar 

  15. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  Google Scholar 

  16. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  Google Scholar 

  17. Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17:1558–68.

    Article  CAS  Google Scholar 

  18. •• Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34 This study showed that patients treated with nivolumab plus ipilimumab had significantly higher progression-free survival rates and 3-year overall survival rates than those treated with ipilimumab alone. However, the combination group also experienced significantly higher grades 3 or 4 treatment-related adverse events.

    Article  Google Scholar 

  19. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.

    Article  CAS  Google Scholar 

  20. Gibney GT, Kudchadkar RR, DeConti RC, et al. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin Cancer Res. 2015;21(4):712–20.

    Article  CAS  Google Scholar 

  21. Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.

    Article  CAS  Google Scholar 

  22. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29:1239–46.

    Article  Google Scholar 

  23. McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15:323–32.

    Article  CAS  Google Scholar 

  24. Sullivan RJ, Atkins MB, Kirkwood JM, et al. An update on the Society for Immunotherapy of Cancer consensus statement on tumor immunotherapy for the treatment of cutaneous melanoma: version 2.0. J Immunother Cancer. 2018;6:44.

    Article  Google Scholar 

  25. Dabrafenib and trametinib followed by ipilimumab and nivolumab or ipilimumab and nivolumab followed by dabrafenib and trametinib in treating patients with stage III-IV BRAFV600 melanoma. 2018. Retrieved from https://clinicaltrials.gov/ct2 (Identification No. NCT02224781).

  26. Mocellin S, Lens MB, Pasquali S, et al. Interferon alpha for the adjuvant treatment of cutaneous melanoma. Cochrane Database Syst Rev. 2013 Jun 18;6:CD008955.

    Google Scholar 

  27. Glue P, Fang JW, Rouzier-Panis R, Raffanel C, Sabo R, Gupta SK, et al. Pegylated interferon-alpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther. 2000;68(5):556–67.

    Article  CAS  Google Scholar 

  28. Eggermont AM, Suciu S, Santinami M, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet. 2008;372(9633):117–26.

    Article  CAS  Google Scholar 

  29. Eggermont AM, Suciu S, Testori A, et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol. 2012;30(31):3810–8.

    Article  CAS  Google Scholar 

  30. Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, et al. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev. 2018;2:CD011123.

    PubMed  Google Scholar 

  31. Weide B, Derhovanessian E, Pflugfelder A, Eigentler TK, Radny P, Zelba H, et al. High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. Cancer. 2010;116(17):4139–46.

    Article  CAS  Google Scholar 

  32. Weide B, Eigentler TK, Pflugfelder A, Leiter U, Meier F, Bauer J, et al. Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol Immunother. 2011;60(4):487–93.

    Article  CAS  Google Scholar 

  33. Shi VY, Tran K, Patel F, Leventhal J, Konia T, Fung MA, et al. 100% complete response rate in patients with cutaneous metastatic melanoma treated with intralesional interleukin (IL)-2, imiquimod, and topical retinoid combination therapy: results of a case series. J Am Acad Dermatol. 2015;73(4):645–54.

    Article  CAS  Google Scholar 

  34. Weide B, Martens A, Wistuba-Hamprecht K, Zelba H, Maier L, Lipp HP, et al. Combined treatment with ipilimumab and intratumoral interleukin-2 in pretreated patients with stage IV melanoma-safety and efficacy in a phase II study. Cancer Immunol Immunother. 2017;66(4):441–9.

    Article  CAS  Google Scholar 

  35. Samlowski WE, Kondapaneni M, Tharkar S, McGregor JR, Laubach VE, Salvemini D. Endothelial nitric oxide synthase is a key mediator of interleukin-2-induced hypotension and vascular leak syndrome. J Immunother. 2011;34(5):419–27.

    Article  CAS  Google Scholar 

  36. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    CAS  PubMed  Google Scholar 

  37. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. New York: Lea Brothers; 1893.

    Google Scholar 

  38. Coley WB. Treatment of inoperable malignant tumors with the toxins of erysipelas and the bacillus prodigiosus. Trans Am Surg Assoc. 1894;12:183.

    Google Scholar 

  39. Coley WB. The therapeutic value of the mixed toxins of the streptococcus of erysipelas and the bacillus prodigiousus. Am J Med Sci. 1896;112:251–81.

    Article  Google Scholar 

  40. Pawlik TM, Ross MI, Johnson MM, Schacherer CW, McClain DM, Mansfield PF, et al. Predictors and natural history of in-transit melanoma after sentinel lymphadenectomy. Ann Surg Oncol. 2005;12(8):587–96.

    Article  Google Scholar 

  41. Zumla A, Raviglione M, Hafner R, Fordham von Reyn C. Tuberculosis. N Engl J Med. 2013;368:745–55.

    Article  CAS  Google Scholar 

  42. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA. 1994;271(9):698–702.

    Article  CAS  Google Scholar 

  43. Morra ME, Kien ND, Elmaraezy A, Abdelaziz OAM, Elsayed AL, Halhouli O, et al. Early vaccination protects against childhood leukemia: a systematic review and meta-analysis. Sci Rep. 2017;7(1):15986.

    Article  Google Scholar 

  44. Pfahlberg A, Kölmel KF, Grange JM, et al. Inverse association between melanoma and previous vaccinations against tuberculosis and smallpox: results of the FEBIM study. J Invest Dermatol. 2002;119(3):570–5.

    Article  CAS  Google Scholar 

  45. Kölmel KF, Grange JM, Krone B, Mastrangelo G, Rossi CR, Henz BM, et al. Prior immunisation of patients with malignant melanoma with vaccinia or BCG is associated with better survival. An European Organization for Research and Treatment of Cancer cohort study on 542 patients. Eur J Cancer. 2005;41(1):118–25.

    Article  Google Scholar 

  46. Morton DL, Eilber FR, Holmes EC, et al. BCG immunotherapy of malignant melanoma: summary of a seven-year experience. Ann Surg. 1974;180(4):635–43.

    Article  CAS  Google Scholar 

  47. Coit DG, Thompson JA, Albertini M, et al. Melanoma, Version 3.2018, NCCN clinical practice guidelines in oncology. Available from: https://www.nccn.org/professionals/physician_gls/default.aspx [Updated July 12, 2018. Cited August 10, 2018].

  48. Lardone RD, Chan AA, Lee AF, Foshag LJ, Faries MB, Sieling PA, et al. Mycobacterium bovis Bacillus Calmette-Guérin alters melanoma microenvironment favoring antitumor T cell responses and improving M2 macrophage function. Front Immunol. 2017;8:965.

    Article  Google Scholar 

  49. Yang J, Jones MS, Ramos RI, et al. Insights into local tumor microenvironment immune factors associated with regression of cutaneous melanoma metastases by Mycobacterium bovis Bacille Calmette-Guérin. Front Oncol. 2017;7:61.

    Article  Google Scholar 

  50. Kidner TB, Morton DL, Lee DJ, Hoban M, Foshag LJ, Turner RR, et al. Combined intralesional Bacille Calmette-Guérin (BCG) and topical imiquimod for in-transit melanoma. J Immunother. 2012;35(9):716–20.

    Article  CAS  Google Scholar 

  51. Sylvester RJ, van der Meijden AP, Lamm DL. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J Urol. 2002;168(5):1964–70.

    Article  CAS  Google Scholar 

  52. Testori A, Faries MB, Thompson JF, Pennacchioli E, Deroose JP, van Geel AN, et al. Local and intralesional therapy of in-transit melanoma metastases. J Surg Oncol. 2011 Sep;104(4):391–6.

    Article  Google Scholar 

  53. Faries MB. Intralesional immunotherapy for metastatic melanoma: the oldest and newest treatment in oncology. Crit Rev Oncog. 2016;21(1–2):65–73.

    Article  Google Scholar 

  54. Kibbi N, Ariyan S, Faries M, Choi JN. Treatment of in-transit melanoma with intralesional bacillus Calmette-Guérin (BCG) and topical imiquimod 5% cream: a report of 3 cases. J Immunother. 2015;38(9):371–5.

    Article  Google Scholar 

  55. Cohen MH, Herberman RB. Skin test results with common and melanoma antigens in metastatic melanoma patients being treated with intratumoral injections. J Clin Oncol. 2018;36(15_suppl):e21602.

    Article  Google Scholar 

  56. Corrigan PA, Beaulieu C, Patel RB, Lowe DK. Talimogene laherparepvec: an oncolytic virus therapy for melanoma. Ann Pharmacother. 2017;51(8):675–81.

    Article  CAS  Google Scholar 

  57. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22:1048–54.

    Article  CAS  Google Scholar 

  58. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  CAS  Google Scholar 

  59. Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer. 2016;4:53.

    Article  Google Scholar 

  60. •• Migden MR, Rischin D, Schmults CD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341–51 This study showed that among patients with advanced cutaneous squamous cell carcinoma, cemiplimab induced a response in approximately half the patients. The results from this study led to FDA approval of cemiplimab.

    Article  CAS  Google Scholar 

  61. Fitzgerald TL, Dennis S, Kachare SD, Vohra NA, Wong JH, Zervos EE. Dramatic increase in the incidence and mortality from Merkel cell carcinoma in the United States. Am Surg. 2015;81(8):802–6.

    PubMed  Google Scholar 

  62. •• Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17(10):1374–85 This study showed a clinically meaningful and durable objective response rate in patients with chemotherapy-refractory metastatic MCC who were treated with avelumab. The findings from this study led to FDA approval of avelumab.

    Article  CAS  Google Scholar 

  63. Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after ≥1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018;6(1):7.

    Article  Google Scholar 

  64. Avelumab in Subjects with Merkel Cell Carcinoma (JAVELIN Merkel 200). 2018. Retrieved from https://clinicaltrials.gov/ct2 (Identification No. NCT02155647).

  65. Adjuvant Avelumab in Merkel Cell Cancer (ADAM). 2018. Retrieved from https://clinicaltrials.gov/ct2 (Identification No. NCT03271372).

  66. Heery CR, O’Sullivan-Coyne G, Madan RA, et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 2017;18:587–98.

    Article  CAS  Google Scholar 

  67. Kelly K, Infante JR, Taylor MH, Patel MR, Gordon MS, Wong DJL, et al. Safety profile of avelumab in patients with advanced solid tumors: a JAVELIN pooled analysis of phase 1 and 2 data. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35:3059.

    Article  Google Scholar 

  68. Narayan R, Nguyen H, Bentow JJ, Moy L, Lee DK, Greger S, et al. Immunomodulation by imiquimod in patients with high-risk primary melanoma. J Invest Dermatol. 2012;132(1):163–9.

    Article  CAS  Google Scholar 

  69. Aldara (imiquimod) cream 5% [package insert]. St Paul: 3M Pharmaceuticals; 2004.

  70. Geisse JK, Rich P, Pandya A, Gross K, Andres K, Ginkel A, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: a double-blind, randomized, vehicle-controlled study. J Am Acad Dermatol. 2002;47(3):390–8.

    Article  Google Scholar 

  71. Geisse JK, Caro I, Lindholm J, Golitz L, Stampone P, Owens M. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol. 2004;50(5):722–33.

    Article  Google Scholar 

  72. Bath-Hextall F, Ozolins M, Armstrong SJ, Colver GB, Perkins W, Miller PS, et al. Surgical excision versus imiquimod 5% cream for nodular and superficial basal-cell carcinoma (SINS): a multicentre, non-inferiority, randomised controlled trial. Lancet Oncol. 2014;15:96–105.

    Article  CAS  Google Scholar 

  73. Williams HC, Bath-Hextall F, Ozolins M, Armstrong SJ, Colver GB, Perkins W, et al. Surgery versus 5% imiquimod for nodular and superficial basal cell carcinoma: 5-year results of the SINS randomized controlled trial. J Invest Dermatol. 2017;137(3):614–9.

    Article  CAS  Google Scholar 

  74. Roozeboom MH, Nelemans PJ, Mosterd K, Steijlen PM, Arits AHMM, Kelleners-Smeets NWJ. Photodynamic therapy vs. topical imiquimod for treatment of superficial basal cell carcinoma: a subgroup analysis within a noninferiority randomized controlled trial. Br J Dermatol. 2015;172(3):739–45.

    Article  CAS  Google Scholar 

  75. Roozeboom MH, Arits AH, Mosterd K, et al. Three-year follow-up results of photodynamic therapy vs. imiquimod vs. fluorouracil for treatment of superficial basal cell carcinoma: a single-blind, noninferiority, randomized controlled trial. J Invest Dermatol. 2016;136(8):1568–74.

    Article  CAS  Google Scholar 

  76. Mora AN, Karia PS, Nguyen BM. A quantitative systematic review of the efficacy of imiquimod monotherapy for lentigo maligna and an analysis of factors that affect tumor clearance. J Am Acad Dermatol. 2015;73(2):205–12.

    Article  CAS  Google Scholar 

  77. Gautschi M, Oberholzer PA, Baumgartner M, et al. Prognostic markers in lentigo maligna patients treated with imiquimod cream: a long-term follow-up study. J Am Acad Dermatol. 2016;74(1):81–87.e1.

    Article  CAS  Google Scholar 

  78. Kai AC, Richards T, Coleman A, Mallipeddi R, Barlow R, Craythorne EE. Five-year recurrence rate of lentigo maligna after treatment with imiquimod. Br J Dermatol. 2016;174(1):165–8.

    Article  CAS  Google Scholar 

  79. Tio D, van der Woude J, Prinsen CAC, Jansma EP, Hoekzema R, van Montfrans C. A systematic review on the role of imiquimod in lentigo maligna and lentigo maligna melanoma: need for standardization of treatment schedule and outcome measures. J Eur Acad Dermatol Venereol. 2017;31(4):616–24.

    Article  CAS  Google Scholar 

  80. Machida H, Moeini A, Roman LD, Matsuo K. Effects of imiquimod on vulvar Paget’s disease: a systematic review of literature. Gynecol Oncol. 2015;139(1):165–71.

    Article  CAS  Google Scholar 

  81. Liau MM, Yang SS, Tan KB, et al. Topical imiquimod in the treatment of extramammary Paget’s disease: a 10 year retrospective analysis in an Asian tertiary centre. Dermatol Ther. 2016;29(6):459–62.

    Article  Google Scholar 

  82. Sawada M, Kato J, Yamashita T, Yoneta A, Hida T, Horimoto K, et al. Imiquimod 5% cream as a therapeutic option for extramammary Paget’s disease. J Dermatol. 2018;45(2):216–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

Dr. Lee reports personal fees outside the submitted work.

Alison Kang, Dan Zhao, and James J. Yeh declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, A., Zhao, D., Yeh, J.J. et al. Updates on Immunotherapy for the Treatment of Skin Cancer. Curr Derm Rep 7, 311–320 (2018). https://doi.org/10.1007/s13671-018-0246-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-018-0246-5

Keywords

Navigation