Skip to main content

Advertisement

Log in

The Skin Microbiome in Atopic Dermatitis—a Potential Treatment Target?

  • Atopic Dermatitis (C Vestergaard, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Staphylococcus aureus (S. aureus) frequently colonize the skin of patients with atopic dermatitis (AD). The abundance of S. aureus increases during flares, accompanied by a reduction in bacterial diversity. This flare-associated imbalance in the cutaneous microflora (dysbiosis) correlates with disease severity. However, the causality of this association has not yet been fully established, and this review aims to further explore the relation between the skin microbiome and AD along with the clinical implications hereof.

Recent Findings

Recently, it has been shown that the skin microbiome in clinically unaffected skin of AD patients differs from that of healthy individuals. In addition, mutations in the gene encoding the structural protein filaggrin (FLG) have been shown to influence the skin microbiome.

Summary

Skin barrier impairments, which characterize the AD phenotype, influence the skin microbiome and increase the susceptibility to colonization with S. aureus. In turn, S. aureus can promote skin inflammation by a broad spectrum of virulence factors. Modulation of the skin microbiome by transferring beneficial skin commensals to the skin of AD patients may represent a promising strategy for the future management of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol. 2017;139(6):1723–34. https://doi.org/10.1016/j.jaci.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  2. Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1. https://doi.org/10.1038/s41572-018-0001-z.

    Article  PubMed  Google Scholar 

  3. Guttman-Yassky E, Waldman A, Ahluwalia J, Ong PY, Eichenfield LF. Atopic dermatitis: pathogenesis. Semin Cutan Med Surg. 2017;36(3):100–3. https://doi.org/10.12788/j.sder.2017.036.

    Article  PubMed  Google Scholar 

  4. Zhu TH, Zhu TR, Tran KA, Sivamani RK, Shi VY. Epithelial barrier dysfunctions in atopic dermatitis: a skin-gut-lung model linking microbiome alteration and immune dysregulation. Br J Dermatol. 2018;179:570–81. https://doi.org/10.1111/bjd.16734.

    Article  CAS  PubMed  Google Scholar 

  5. Yamazaki Y, Nakamura Y, Nunez G. Role of the microbiota in skin immunity and atopic dermatitis. Allergol Int. 2017;66(4):539–44. https://doi.org/10.1016/j.alit.2017.08.004.

    Article  PubMed  Google Scholar 

  6. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9. https://doi.org/10.1101/gr.131029.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. •• Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397). https://doi.org/10.1126/scitranslmed.aal4651 A study describing the temporal dynamics of the skin microbiome during the course of AD, demonstrating that the abundance of S. aureus and S. epidermidis increases while bacterial diversity decreases during flares.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53. https://doi.org/10.1038/nrmicro2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(Suppl 1):S38–44. https://doi.org/10.1111/j.1753-4887.2012.00493.x.

    Article  PubMed  Google Scholar 

  10. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162. https://doi.org/10.3389/fmicb.2017.01162.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Musthaq S, Mazuy A, Jakus J. The microbiome in dermatology. Clin Dermatol. 2018;36(3):390–8. https://doi.org/10.1016/j.clindermatol.2018.03.012.

    Article  PubMed  Google Scholar 

  12. SanMiguel A, Grice EA. Interactions between host factors and the skin microbiome. Cell Mol Life Sci. 2015;72(8):1499–515. https://doi.org/10.1007/s00018-014-1812-z.

    Article  CAS  PubMed  Google Scholar 

  13. Hilton SK, Castro-Nallar E, Perez-Losada M, Toma I, McCaffrey TA, Hoffman EP, et al. Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Front Microbiol. 2016;7:484. https://doi.org/10.3389/fmicb.2016.00484.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mathieu A, Vogel TM, Simonet P. The future of skin metagenomics. Res Microbiol. 2014;165(2):69–76. https://doi.org/10.1016/j.resmic.2013.12.002.

    Article  CAS  PubMed  Google Scholar 

  15. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459. https://doi.org/10.3389/fmicb.2016.00459.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kong HH, Andersson B, Clavel T, Common JE, Jackson SA, Olson ND, et al. Performing skin microbiome research: a method to the madness. J Invest Dermatol. 2017;137(3):561–8. https://doi.org/10.1016/j.jid.2016.10.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun. 2016;469(4):967–77. https://doi.org/10.1016/j.bbrc.2015.12.083.

    Article  CAS  PubMed  Google Scholar 

  18. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin microbiome surveys are strongly influenced by experimental design. J Invest Dermatol. 2016;136(5):947–56. https://doi.org/10.1016/j.jid.2016.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjerre RD, Bandier J, Skov L, Engstrand L, Johansen JD. The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol. 2017;177(5):1272–8. https://doi.org/10.1111/bjd.15390.

    Article  CAS  PubMed  Google Scholar 

  20. Clausen ML, Agner T. Antimicrobial peptides, infections and the skin barrier. Curr Probl Dermatol. 2016;49:38–46. https://doi.org/10.1159/000441543.

    Article  PubMed  Google Scholar 

  21. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377–82. https://doi.org/10.1038/nm.2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130(9):2211–21. https://doi.org/10.1038/jid.2010.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, et al. Commensal microbiota modulate gene expression in the skin. Microbiome. 2018;6(1):20. https://doi.org/10.1186/s40168-018-0404-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wanke I, Steffen H, Christ C, Krismer B, Gotz F, Peschel A, et al. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol. 2011;131(2):382–90. https://doi.org/10.1038/jid.2010.328.

    Article  CAS  PubMed  Google Scholar 

  25. • Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378). https://doi.org/10.1126/scitranslmed.aah4680 A study demonstrating that AMP-producing coagulase-negative staphylococci are common in healty individuals, but rare in AD patients, and that these strains are able to inhibit S. aureus growth.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Francuzik W, Franke K, Schumann RR, Heine G, Worm M. Propionibacterium acnes abundance correlates inversely with Staphylococcus aureus: data from atopic dermatitis skin microbiome. Acta Derm Venereol. 2018;98(5):490–5. https://doi.org/10.2340/00015555-2896.

    Article  PubMed  Google Scholar 

  27. Paharik AE, Parlet CP, Chung N, Todd DA, Rodriguez EI, Van Dyke MJ, et al. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe. 2017;22(6):746–56.e5. https://doi.org/10.1016/j.chom.2017.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strober W. Epithelial cells pay a Toll for protection. Nat Med. 2004;10(9):898–900. https://doi.org/10.1038/nm0904-898.

    Article  CAS  PubMed  Google Scholar 

  29. Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol. 2003;24(7):358–63.

    Article  CAS  PubMed  Google Scholar 

  30. Shi B, Bangayan NJ, Curd E, Taylor PA, Gallo RL, Leung DYM, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016;138(4):1233–6. https://doi.org/10.1016/j.jaci.2016.04.053.

    Article  PubMed  PubMed Central  Google Scholar 

  31. •• Clausen ML, Agner T, Lilje B, Edslev SM, Johannesen TB, Andersen PS. Association of Disease Severity With Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis. JAMA Dermatol. 2018;154(3):293–300. https://doi.org/10.1001/jamadermatol.2017.5440 A study showing that the composition of the skin microbiome in non-lesional AD skin differs from that of healthy individuals with decreased bacterial diversity and increased abundance of staphylococci, and that FLG mutations influence the skin mirobiome composition.

    Article  PubMed  PubMed Central  Google Scholar 

  32. •• Clausen ML, Edslev SM, Andersen PS, Clemmensen K, Krogfelt KA, Agner T. Staphylococcus aureus colonization in atopic eczema and its association with filaggrin gene mutations. Br J Dermatol. 2017. https://doi.org/10.1111/bjd.15470 A study demonstratring that S. aureus strains colonizing AD patients differ from those of healthy individuals, and that FLG mutations are related to increased S. aureus colonization and colonization with CC1 strains.

    Article  CAS  PubMed  Google Scholar 

  33. Di Domenico EG, Cavallo I, Bordignon V, Prignano G, Sperduti I, Gurtner A, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep. 2018;8(1):9573. https://doi.org/10.1038/s41598-018-27421-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alsterholm M, Strombeck L, Ljung A, Karami N, Widjestam J, Gillstedt M, et al. Variation in Staphylococcus aureus colonization in relation to disease severity in adults with atopic dermatitis during a five-month follow-up. Acta Derm Venereol. 2017;97(7):802–7. https://doi.org/10.2340/00015555-2667.

    Article  CAS  PubMed  Google Scholar 

  35. Totte JE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SG. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–95. https://doi.org/10.1111/bjd.14566.

    Article  CAS  PubMed  Google Scholar 

  36. Park HY, Kim CR, Huh IS, Jung MY, Seo EY, Park JH, et al. Staphylococcus aureus colonization in acute and chronic skin lesions of patients with atopic dermatitis. Ann Dermatol. 2013;25(4):410–6. https://doi.org/10.5021/ad.2013.25.4.410.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gonzalez ME, Schaffer JV, Orlow SJ, Gao Z, Li H, Alekseyenko AV, et al. Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. J Am Acad Dermatol. 2016;75(3):481–93.e8. https://doi.org/10.1016/j.jaad.2016.04.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oh J, Freeman AF, Park M, Sokolic R, Candotti F, Holland SM, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23(12):2103–14. https://doi.org/10.1101/gr.159467.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hon KL, Tsang YC, Pong NH, Leung TF, Ip M. Exploring Staphylococcus epidermidis in atopic eczema: friend or foe? Clin Exp Dermatol. 2016;41(6):659–63. https://doi.org/10.1111/ced.12866.

    Article  CAS  PubMed  Google Scholar 

  40. Clausen ML, Edslev SM, Norreslet LB, Sorensen JA, Andersen PS, Agner T. Temporal variation of Staphylococcus aureus clonal complexes in atopic dermatitis - a follow up study. Br J Dermatol. 2018. https://doi.org/10.1111/bjd.17033.

  41. Messina JA, Thaden JT, Sharma-Kuinkel BK, Fowler VG Jr. Impact of bacterial and human genetic variation on Staphylococcus aureus infections. PLoS Pathog. 2016;12(1):e1005330. https://doi.org/10.1371/journal.ppat.1005330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rojo A, Aguinaga A, Monecke S, Yuste JR, Gastaminza G, Espana A. Staphylococcus aureus genomic pattern and atopic dermatitis: may factors other than superantigens be involved? Eur J Clin Microbiol Infect Dis. 2014;33(4):651–8. https://doi.org/10.1007/s10096-013-2000-z.

    Article  CAS  PubMed  Google Scholar 

  43. Yeung M, Balma-Mena A, Shear N, Simor A, Pope E, Walsh S, et al. Identification of major clonal complexes and toxin producing strains among Staphylococcus aureus associated with atopic dermatitis. Microbes Infect. 2011;13(2):189–97. https://doi.org/10.1016/j.micinf.2010.10.023.

    Article  CAS  PubMed  Google Scholar 

  44. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 2018;26(6):484–97. https://doi.org/10.1016/j.tim.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  45. •• Chng KR, Tay AS, Li C, Ng AH, Wang J, Suri BK, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106. https://doi.org/10.1038/nmicrobiol.2016.106 A study exploring the skin microbiome in AD, illustrating significant differences between the composition of the skin microbiome in non-lesional AD skin and healthy skin. The findings suggest that benificial skin commensals fail to thrive in AD skin making the skin more susceptible to S. aureus colonization.

    Article  CAS  PubMed  Google Scholar 

  46. • Baurecht H, Ruhlemann MC, Rodriguez E, Thielking F, Harder I, Erkens AS, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol. 2018;141(5):1668–76.e16. https://doi.org/10.1016/j.jaci.2018.01.019 A study demonstrating how skin abnormalities (lipid composition, FLG mutation) in non-lesional AD skin are related to the microbiome composition.

    Article  CAS  PubMed  Google Scholar 

  47. Elias PM. Primary role of barrier dysfunction in the pathogenesis of atopic dermatitis. Exp Dermatol. 2018;27(8):847–51. https://doi.org/10.1111/exd.13693.

    Article  CAS  PubMed  Google Scholar 

  48. Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751–62. https://doi.org/10.1038/jid.2011.393.

    Article  CAS  PubMed  Google Scholar 

  49. Saintive S, Abad E, D CF, Stambovsky M, Cavalcante FS, Goncalves LS, et al. What is the role of Staphylococcus aureus and herpes virus infections in the pathogenesis of atopic dermatitis? Future Microbiol. 2017;12:1327–34. https://doi.org/10.2217/fmb-2017-0081.

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez T, Biagini Myers JM, Herr AB, Khurana Hershey GK. Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17(12):81. https://doi.org/10.1007/s11882-017-0750-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184–90.e3. https://doi.org/10.1016/j.jaci.2010.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cho SH, Strickland I, Boguniewicz M, Leung DY. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001;108(2):269–74. https://doi.org/10.1067/mai.2001.117455.

    Article  CAS  PubMed  Google Scholar 

  53. Clausen ML, Slotved HC, Krogfelt KA, Andersen PS, Agner T. In vivo expression of antimicrobial peptides in atopic dermatitis. Exp Dermatol. 2016;25(1):3–9. https://doi.org/10.1111/exd.12831.

    Article  CAS  PubMed  Google Scholar 

  54. Williams MR, Gallo RL. Evidence that human skin microbiome dysbiosis promotes atopic dermatitis. J Invest Dermatol. 2017;137(12):2460–1. https://doi.org/10.1016/j.jid.2017.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. https://doi.org/10.1038/nature12655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Williams MR, Nakatsuji T, Gallo RL. Staphylococcus aureus: master manipulator of the skin. Cell Host Microbe. 2017;22(5):579–81. https://doi.org/10.1016/j.chom.2017.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iwamoto K, Moriwaki M, Niitsu Y, Saino M, Takahagi S, Hisatsune J, et al. Staphylococcus aureus from atopic dermatitis skin alters cytokine production triggered by monocyte-derived Langerhans cell. J Dermatol Sci. 2017;88(3):271–9. https://doi.org/10.1016/j.jdermsci.2017.08.001.

    Article  CAS  PubMed  Google Scholar 

  58. Williams MR, Nakatsuji T, Sanford JA, Vrbanac AF, Gallo RL. Staphylococcus aureus induces increased serine protease activity in keratinocytes. J Invest Dermatol. 2017;137(2):377–84. https://doi.org/10.1016/j.jid.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  59. Voegeli R, Rawlings AV, Breternitz M, Doppler S, Schreier T, Fluhr JW. Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol. 2009;161(1):70–7. https://doi.org/10.1111/j.1365-2133.2009.09142.x.

    Article  CAS  PubMed  Google Scholar 

  60. •• Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–66. https://doi.org/10.1016/j.immuni.2015.03.014 A study using a murine model of AD, demonstrating that skin inflammation is almost eliminated and the AD-associated dysbiosis reverted when S. aureus are targeted by selective antibiotics, thereby indicating causality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Kennedy EA, Connolly J, Hourihane JO, Fallon PG, McLean WH, Murray D, et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol. 2017;139(1):166–72. https://doi.org/10.1016/j.jaci.2016.07.029 A study investigating whether dysbiosis exists prior to initial development of AD. The findings suggest that early colonization by commensal staphylococci is related to the decreased risk of AD development, and that S. aureus colonization takes place subsequent to AD development.

    Article  PubMed  PubMed Central  Google Scholar 

  62. • Meylan P, Lang C, Mermoud S, Johannsen A, Norrenberg S, Hohl D, et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Invest Dermatol. 2017;137(12):2497–504. https://doi.org/10.1016/j.jid.2017.07.834 A study indicating that dysbiosis and increased S. aureus abundance in infants are related to subsequent development of AD.

    Article  CAS  PubMed  Google Scholar 

  63. Werfel T, Schwerk N, Hansen G, Kapp A. The diagnosis and graded therapy of atopic dermatitis. Deutsch Arztebl Int. 2014;111(29–30):509–20, i. https://doi.org/10.3238/arztebl.2014.0509.

    Article  Google Scholar 

  64. Bath-Hextall FJ, Birnie AJ, Ravenscroft JC, Williams HC. Interventions to reduce Staphylococcus aureus in the management of atopic eczema: an updated Cochrane review. Br J Dermatol. 2010;163(1):12–26. https://doi.org/10.1111/j.1365-2133.2010.09743.x.

    Article  CAS  PubMed  Google Scholar 

  65. Wrobel J, Tomczak H, Jenerowicz D, Czarnecka-Operacz M. Skin and nasal vestibule colonisation by Staphylococcus aureus and its susceptibility to drugs in atopic dermatitis patients. Ann Agric Environ Med. 2018;25(2):334–7. https://doi.org/10.26444/aaem/85589.

    Article  PubMed  Google Scholar 

  66. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123(5):e808–14. https://doi.org/10.1542/peds.2008-2217.

    Article  PubMed  Google Scholar 

  67. Myles IA, Williams KW, Reckhow JD, Jammeh ML, Pincus NB, Sastalla I, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10). https://doi.org/10.1172/jci.insight.86955.

  68. Gueniche A, Knaudt B, Schuck E, Volz T, Bastien P, Martin R, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol. 2008;159(6):1357–63. https://doi.org/10.1111/j.1365-2133.2008.08836.x.

    Article  CAS  PubMed  Google Scholar 

  69. Glatz M, Jo JH, Kennedy EA, Polley EC, Segre JA, Simpson EL, et al. Emollient use alters skin barrier and microbes in infants at risk for developing atopic dermatitis. PLoS One. 2018;13(2):e0192443. https://doi.org/10.1371/journal.pone.0192443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Simpson EL, Chalmers JR, Hanifin JM, Thomas KS, Cork MJ, McLean WH, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818–23. https://doi.org/10.1016/j.jaci.2014.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Simpson EL, Berry TM, Brown PA, Hanifin JM. A pilot study of emollient therapy for the primary prevention of atopic dermatitis. J Am Acad Dermatol. 2010;63(4):587–93. https://doi.org/10.1016/j.jaad.2009.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Edslev SM, Clausen ML, Agner T, Stegger M, Andersen PS. Genomic analysis reveals different mechanisms of fusidic acid resistance in Staphylococcus aureus from Danish atopic dermatitis patients. J Antimicrob Chemother. 2018;73(4):856–61. https://doi.org/10.1093/jac/dkx481.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Meyer Olesen.

Ethics declarations

Conflict of Interest

Dr. Agner reports other personal fees outside of the submitted work. Caroline Meyer Olesen, Maja-Lisa Clausen, and Paal Skytt Andersen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Atopic Dermatitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olesen, C.M., Clausen, ML., Andersen, P.S. et al. The Skin Microbiome in Atopic Dermatitis—a Potential Treatment Target?. Curr Derm Rep 7, 199–208 (2018). https://doi.org/10.1007/s13671-018-0245-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-018-0245-6

Keywords

Navigation