Current Dermatology Reports

, Volume 7, Issue 2, pp 91–98 | Cite as

What Is New in CTCL—Pathogenesis, Diagnosis, and Treatments

  • Brittany O. Dulmage
  • Betty Y. Kong
  • Kassandra Holzem
  • Joan Guitart
Skin Cancer (A Marghoob and M Marchetti, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Skin Cancer


Purpose of Review

Cutaneous T cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin’s lymphoma primarily affecting the skin, of which mycosis fungoides (MF) and Sézary syndrome (SS) account for the majority of cases. The pathogenesis of CTCL is poorly understood with no strongly associated environmental or genetic risk factors identified to date. As such, the development of disease-specific therapies has been limited by a lack of understanding of potentially actionable targets. Moreover, the diagnosis of CTCL remains challenging with nonspecific diagnostic criteria, especially in early-stage disease.

Recent Findings

The advent of high-throughput sequencing techniques and molecular modalities has provided significant insight into disease pathogenesis, diagnosis, and potential therapies.


Here, we review the classic features of CTCL, focusing on MF/SS, and provide updates on our understanding of this disease.


Cutaneous T cell lymphoma Mycosis fungoides Sézary syndrome T cell receptor Monoclonal antibody Checkpoint inhibitor 


Compliance with Ethical Standards

Conflict of Interest

Dr. Dulmage has a patent “Method for diagnosis, prognosis and determination of treatment for cutaneous t-cell lymphoma” pending.

Drs. Betty Y. Kong, Kassandra Holzem and Joan Guitart declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol. 2007;143:854–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Bradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113:5064–73.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105:3768–85.CrossRefPubMedGoogle Scholar
  4. 4.
    Korgavkar K, Weinstock MA. Changing incidence trends of cutaneous B-cell lymphoma. The Journal of investigative dermatology. 2014;134:840–2.CrossRefPubMedGoogle Scholar
  5. 5.
    Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28:4730–9.CrossRefGoogle Scholar
  6. 6.
    Hodak E, Lapidoth M, Kohn K, David D, Brautbar B, Kfir K, et al. Mycosis fungoides: HLA class II associations among Ashkenazi and non-Ashkenazi Jewish patients. Br J Dermatol. 2001;145:974–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Wohl Y, Tur E. Environmental risk factors for mycosis fungoides. Curr Probl Dermatol. 2007;35:52–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Morales Suarez-Varela MM, Olsen J, Kaerlev L, Guenel P, Arveux P, Wingren G, et al. Are alcohol intake and smoking associated with mycosis fungoides? A European multicentre case-control study. Eur J Cancer. 2001;37:392–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Morales-Suarez-Varela MM, Olsen J, Johansen P, Kaerlev L, Guenel P, Arveux P, et al. Occupational sun exposure and mycosis fungoides: a European multicenter case-control study. J Occup Environ Med. 2006;48:390–3.CrossRefPubMedGoogle Scholar
  10. 10.
    •• da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet. 2015;47:1465–70. This is a landmark study of genetic aberrations in CTCL. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Park J, Yang J, Wenzel AT, Ramachandran A, Lee WJ, Daniels JC, et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood. 2017;130:1430–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Litvinov IV, Tetzlaff MT, Thibault P, Gangar P, Moreau L, Watters AK, et al. Gene expression analysis in cutaneous T-cell lymphomas (CTCL) highlights disease heterogeneity and potential diagnostic and prognostic indicators. Oncoimmunology. 2017;6:e1306618.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    •• McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126:508–19. This is another landmark study of genetic aberrations in CTCL. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    •• Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47:1011–9. This is a third landmark study of genetic aberrations in CTCL. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kamarashev J, Burg G, Kempf W, Hess Schmid M, Dummer R. Comparative analysis of histological and immunohistological features in mycosis fungoides and Sezary syndrome. J Cutan Pathol. 1998;25:407–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116:767–71.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Saed G, Fivenson DP, Naidu Y, Nickoloff BJ. Mycosis fungoides exhibits a Th1-type cell-mediated cytokine profile whereas Sezary syndrome expresses a Th2-type profile. The Journal of investigative dermatology. 1994;103:29–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Kallinich T, Muche JM, Qin S, Sterry W, Audring H, Kroczek RA. Chemokine receptor expression on neoplastic and reactive T cells in the skin at different stages of mycosis fungoides. The Journal of investigative dermatology. 2003;121:1045–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Wong HK, Mishra A, Hake T, Porcu P. Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). Br J Haematol. 2011;155:150–66.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barba G, Matteucci C, Girolomoni G, Brandimarte L, Varasano E, Martelli MF, et al. Comparative genomic hybridization identifies 17q11.2 approximately q12 duplication as an early event in cutaneous T-cell lymphomas. Cancer Genet Cytogenet. 2008;184:48–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Caprini E, Cristofoletti C, Arcelli D, Fadda P, Citterich MH, Sampogna F, et al. Identification of key regions and genes important in the pathogenesis of Sezary syndrome by combining genomic and expression microarrays. Cancer Res. 2009;69:8438–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Vermeer MH, van Doorn R, Dijkman R, Mao X, Whittaker S, van Voorst Vader PC, et al. Novel and highly recurrent chromosomal alterations in Sezary syndrome. Cancer Res. 2008;68:2689–98.CrossRefPubMedGoogle Scholar
  23. 23.
    Salgado R, Gallardo F, Servitje O, Estrach T, Garcia-Muret MP, Romagosa V, et al. Absence of TCR loci chromosomal translocations in cutaneous T-cell lymphomas. Cancer genetics. 2011;204:405–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Woollard WJ, Pullabhatla V, Lorenc A, Patel VM, Butler RM, Bayega A, et al. Candidate driver genes involved in genome maintenance and DNA repair in Sezary syndrome. Blood. 2016;127:3387–97.CrossRefPubMedGoogle Scholar
  25. 25.
    Ballabio E, Mitchell T, van Kester MS, Taylor S, Dunlop HM, Chi J, et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood. 2010;116:1105–13.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ralfkiaer U, Hagedorn PH, Bangsgaard N, Lovendorf MB, Ahler CB, Svensson L, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011;118:5891–900.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Narducci MG, Arcelli D, Picchio MC, Lazzeri C, Pagani E, Sampogna F, et al. MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sezary syndrome. Cell Death Dis. 2011;2:e151.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Marosvari D, Teglasi V, Csala I, Marschalko M, Bodor C, Timar B, et al. Altered microRNA expression in folliculotropic and transformed mycosis fungoides. Pathology oncology research : POR. 2015;21:821–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Ralfkiaer U, Lindahl LM, Litman T, Gjerdrum LM, Ahler CB, Gniadecki R, et al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res. 2014;34:7207–17.PubMedGoogle Scholar
  30. 30.
    Pimpinelli N, Olsen EA, Santucci M, Vonderheid E, Haeffner AC, Stevens S, et al. Defining early mycosis fungoides. J Am Acad Dermatol. 2005;53:1053–63.CrossRefPubMedGoogle Scholar
  31. 31.
    Martinez-Escala ME, Kantor RW, Cices A, Zhou XA, Kaplan JB, Pro B, et al. CD8+ mycosis fungoides: a low-grade lymphoproliferative disorder. J Am Acad Dermatol. 2017;77:489–96.CrossRefPubMedGoogle Scholar
  32. 32.
    Bergman R, Faclieru D, Sahar D, Sander CA, Kerner H, Ben-Aryeh Y, et al. Immunophenotyping and T-cell receptor gamma gene rearrangement analysis as an adjunct to the histopathologic diagnosis of mycosis fungoides. J Am Acad Dermatol. 1998;39:554–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Ormsby A, Bergfeld WF, Tubbs RR, Hsi ED. Evaluation of a new paraffin-reactive CD7 T-cell deletion marker and a polymerase chain reaction-based T-cell receptor gene rearrangement assay: implications for diagnosis of mycosis fungoides in community clinical practice. J Am Acad Dermatol. 2001;45:405–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Vermeer MH, Geelen FA, Kummer JA, Meijer CJ, Willemze R. Expression of cytotoxic proteins by neoplastic T cells in mycosis fungoides increases with progression from plaque stage to tumor stage disease. Am J Pathol. 1999;154:1203–10.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ponti R, Quaglino P, Novelli M, Fierro MT, Comessatti A, Peroni A, et al. T-cell receptor gamma gene rearrangement by multiplex polymerase chain reaction/heteroduplex analysis in patients with cutaneous T-cell lymphoma (mycosis fungoides/Sezary syndrome) and benign inflammatory disease: correlation with clinical, histological and immunophenotypical findings. Br J Dermatol. 2005;153:565–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Sandberg Y, van Gastel-Mol EJ, Verhaaf B, Lam KH, van Dongen JJ, Langerak AW. BIOMED-2 multiplex immunoglobulin/T-cell receptor polymerase chain reaction protocols can reliably replace Southern blot analysis in routine clonality diagnostics. J Mol Diagn. 2005;7:495–503.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Thurber SE, Zhang B, Kim YH, Schrijver I, Zehnder J, Kohler S. T-cell clonality analysis in biopsy specimens from two different skin sites shows high specificity in the diagnosis of patients with suggested mycosis fungoides. J Am Acad Dermatol. 2007;57:782–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Walsh NM, Prokopetz R, Tron VA, Sawyer DM, Watters AK, Murray S, et al. Histopathology in erythroderma: review of a series of cases by multiple observers. J Cutan Pathol. 1994;21:419–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Boonk SE, Zoutman WH, Marie-Cardine A, van der Fits L, Out-Luiting JJ, Mitchell TJ, et al. Evaluation of immunophenotypic and molecular biomarkers for Sezary syndrome using standard operating procedures: a multicenter study of 59 patients. The Journal of investigative dermatology. 2016;136:1364–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Vonderheid EC, Pena J, Nowell P. Sezary cell counts in erythrodermic cutaneous T-cell lymphoma: implications for prognosis and staging. Leukemia & lymphoma. 2006;47:1841–56.CrossRefGoogle Scholar
  41. 41.
    Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110:1713–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Kim YH, Jensen RA, Watanabe GL, Varghese A, Hoppe RT. Clinical stage IA (limited patch and plaque) mycosis fungoides. A long-term outcome analysis. Arch Dermatol. 1996;132:1309–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Talpur R, Singh L, Daulat S, Liu P, Seyfer S, Trynosky T, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18:5051–60.CrossRefGoogle Scholar
  44. 44.
    • Scarisbrick JJ, Prince HM, Vermeer MH, Quaglino P, Horwitz S, Porcu P, et al. Cutaneous Lymphoma International Consortium study of outcome in advanced stages of mycosis fungoides and sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015;33:3766–73. This is a collaborative multicountry study put on by the Cutaneous Lymphoma International Consortium to identifiy prognostic markers in CTCL. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003;139:857–66.PubMedGoogle Scholar
  46. 46.
    Lefeber WP, Robinson JK, Clendenning WE, Dunn JL, Colton T. Attempts to enhance light microscopic diagnosis of cutaneous T-cell lymphoma (mycosis fungoides). Arch Dermatol. 1981;117:408–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Olerud JE, Kulin PA, Chew DE, Carlsen RA, Hammar SP, Weir TW, et al. Cutaneous T-cell lymphoma. Evaluation of pretreatment skin biopsy specimens by a panel of pathologists. Arch Dermatol. 1992;128:501–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Santucci M, Biggeri A, Feller AC, Burg G. Accuracy, concordance, and reproducibility of histologic diagnosis in cutaneous T-cell lymphoma: an EORTC Cutaneous Lymphoma Project Group Study. European Organization for Research and Treatment of Cancer. Arch Dermatol. 2000;136:497–502.CrossRefPubMedGoogle Scholar
  49. 49.
    Tok J, Szabolcs MJ, Silvers DN, Zhong J, Matsushima AY. Detection of clonal T-cell receptor gamma chain gene rearrangements by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE) in archival specimens from patients with early cutaneous T-cell lymphoma: correlation of histologic findings with PCR/DGGE. J Am Acad Dermatol. 1998;38:453–60.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang B, Beck AH, Taube JM, Kohler S, Seo K, Zwerner J, et al. Combined use of PCR-based TCRG and TCRB clonality tests on paraffin-embedded skin tissue in the differential diagnosis of mycosis fungoides and inflammatory dermatoses. J Mol Diagn. 2010;12:320–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood. 2009;114:4099–107.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    •• Kirsch IR, Watanabe R, O'Malley JT, Williamson DW, Scott LL, Elco CP, et al. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Sci Trans Med. 2015;7:308ra158. This is a landmark study of TCR sequencing for identification of malignant T cells in CTCL. CrossRefGoogle Scholar
  53. 53.
    Sufficool KE, Lockwood CM, Abel HJ, Hagemann IS, Schumacher JA, Kelley TW, et al. T-cell clonality assessment by next-generation sequencing improves detection sensitivity in mycosis fungoides. J Am Acad Dermatol. 2015;73:228–236 e222.CrossRefPubMedGoogle Scholar
  54. 54.
    Weng WK, Armstrong R, Arai S, Desmarais C, Hoppe R, Kim YH. Minimal residual disease monitoring with high-throughput sequencing of T cell receptors in cutaneous T cell lymphoma. Sci Transl Med. 2013;5:214ra171.CrossRefPubMedGoogle Scholar
  55. 55.
    Feng B, Jorgensen JL, Jones D, Chen SS, Hu Y, Medeiros LJ, et al. Flow cytometric detection of peripheral blood involvement by mycosis fungoides and Sezary syndrome using T-cell receptor Vbeta chain antibodies and its application in blood staging. Mod Pathol. 2010;23:284–95.CrossRefPubMedGoogle Scholar
  56. 56.
    Clark RA, Shackelton JB, Watanabe R, Calarese A, Yamanaka K, Campbell JJ, et al. High-scatter T cells: a reliable biomarker for malignant T cells in cutaneous T-cell lymphoma. Blood. 2011;117:1966–76.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dulmage B O, Akilov O, Vu J R, Falo L D, Geskin L J. Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget 2015.Google Scholar
  58. 58.
    Zhang Y, Wang Y, Yu R, Huang Y, Su M, Xiao C, et al. Molecular markers of early-stage mycosis fungoides. J Investigative Dermatol. 2012;132:1698–706.CrossRefGoogle Scholar
  59. 59.
    Litvinov IV, Netchiporouk E, Cordeiro B, Dore MA, Moreau L, Pehr K, et al. The use of transcriptional profiling to improve personalized diagnosis and management of cutaneous T-cell lymphoma (CTCL). Clin Cancer Res. 2015;21:2820–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    • Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126:1452–61. Important initial study of the topical immunomodulator resiquimod in the treatment of early-stage CTCL. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lundin J, Hagberg H, Repp R, Cavallin-Stahl E, Freden S, Juliusson G, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood. 2003;101:4267–72.CrossRefPubMedGoogle Scholar
  62. 62.
    Ogura M, Ishida T, Hatake K, Taniwaki M, Ando K, Tobinai K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol. 2014;32:1157–63.CrossRefPubMedGoogle Scholar
  63. 63.
    •• Prince HM, Kim YH, Horwitz SM, Dummer R, Scarisbrick J, Quaglino P, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet (London, England). 2017;390:555–66. This is a phase 3 clinical trial that demonstrated the effectiveness of brentuximab vedotin, an anti-CD30 monoclonal antibody conjugated to a tubulin inhibitor, compared with physician’s choice for treatment of CTCL. CrossRefGoogle Scholar
  64. 64.
    Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34:2698–704.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Khodadoust M, Rook AH, Porcu P, Foss FM, Moskowitz AJ, Shustov AR, et al. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a CITN multicenter phase 2 study. Blood. 2016;128:181.Google Scholar
  66. 66.
    Marie-Cardine A, Viaud N, Thonnart N, Joly R, Chanteux S, Gauthier L, et al. IPH4102, a humanized KIR3DL2 antibody with potent activity against cutaneous T-cell lymphoma. Cancer Res. 2014;74:6060–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Dyer MJ, et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998;22:185–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Thursky KA, Worth LJ, Seymour JF, Miles Prince H, Slavin MA. Spectrum of infection, risk and recommendations for prophylaxis and screening among patients with lymphoproliferative disorders treated with alemtuzumab. Br J Haematol. 2006;132:3–12.CrossRefPubMedGoogle Scholar
  69. 69.
    Bernengo MG, Quaglino P, Comessatti A, Ortoncelli M, Novelli M, Lisa F, et al. Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007;92:784–94.CrossRefPubMedGoogle Scholar
  70. 70.
    Sugaya M, Morimura S, Suga H, Kawaguchi M, Miyagaki T, Ohmatsu H, et al. CCR4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis. J Dermatol. 2015;42:613–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30:837–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Duvic M, Pinter-Brown LC, Foss FM, Sokol L, Jorgensen JL, Challagundla P, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125:1883–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    • Ni X, Jorgensen JL, Goswami M, Challagundla P, Decker WK, Kim YH, et al. Reduction of regulatory T cells by Mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sezary syndrome. Clin Cancer Res. 2015;21:274–85. This study highlights the treatment potential of mogalmulizumab, an anti-CCR4 antibody, in treatment of CTCL. CrossRefPubMedGoogle Scholar
  74. 74.
    Sugio T, Kato K, Aoki T, Ohta T, Saito N, Yoshida S, et al. Mogamulizumab treatment prior to allogeneic hematopoietic stem cell transplantation induces severe acute graft-versus-host disease. Biol Blood Marrow Trans. 2016;22:1608–14.CrossRefGoogle Scholar
  75. 75.
    Kim YH, Tavallaee M, Sundram U, Salva KA, Wood GS, Li S, et al. Phase II investigator-initiated study of brentuximab vedotin in mycosis fungoides and Sezary syndrome with variable CD30 expression level: a multi-institution collaborative project. J Clin Oncol. 2015;33:3750–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Duvic M, Tetzlaff MT, Gangar P, Clos AL, Sui D, Talpur R. Results of a phase II trial of brentuximab vedotin for CD30+ cutaneous T-cell lymphoma and lymphomatoid papulosis. J Clin Oncol. 2015;33:3759–65.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sicard H, Bonnafous C, Morel A, Bagot M, Bensussan A, Marie-Cardine A. A novel targeted immunotherapy for CTCL is on its way: anti-KIR3DL2 mAb IPH4102 is potent and safe in non-clinical studies. Oncoimmunology. 2015;4:e1022306.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19:3462–73.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kantekure K, Yang Y, Raghunath P, Schaffer A, Woetmann A, Zhang Q, et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma/mycosis fungoides. Am J Dermatopathol. 2012;34:126–8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Virmani P, Zain J, Rosen ST, Myskowski PL, Querfeld C. Hematopoietic stem cell transplant for mycosis fungoides and Sezary syndrome. Dermatol Clin. 2015;33:807–18.CrossRefPubMedGoogle Scholar
  81. 81.
    Duarte RF, Canals C, Onida F, Gabriel IH, Arranz R, Arcese W, et al. Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sezary syndrome: a retrospective analysis of the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2010;28:4492–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Benjamin J, Chhabra S, Kohrt HE, Lavori P, Laport GG, Arai S, et al. Total lymphoid irradiation-antithymocyte globulin conditioning and allogeneic transplantation for patients with myelodysplastic syndromes and myeloproliferative neoplasms. Biol Blood Marrow Trans. 2014;20:837–43.CrossRefGoogle Scholar
  83. 83.
    Bearman SI. Reduced-intensity allogeneic stem cell transplantation. Curr Hematol Rep. 2003;2:277–86.PubMedGoogle Scholar
  84. 84.
    Baron F, Labopin M, Peniket A, Jindra P, Afanasyev B, Sanz MA, et al. Reduced-intensity conditioning with fludarabine and busulfan versus fludarabine and melphalan for patients with acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Cancer. 2015;121:1048–55.CrossRefPubMedGoogle Scholar
  85. 85.
    Dulmage B, Geskin L, Guitart J, Akilov O E. The biomarker landscape in mycosis fungoides and Sezary syndrome. 2017; 26:668–676.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Brittany O. Dulmage
    • 1
  • Betty Y. Kong
    • 1
  • Kassandra Holzem
    • 1
  • Joan Guitart
    • 1
  1. 1.Department of DermatologyNorthwestern UniversityChicagoUSA

Personalised recommendations