Skip to main content

Advertisement

Log in

Wound Dressings: A Comprehensive Review

  • Wound Care and Healing (A Friedman, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This comprehensive review covers the advantage and limitations of some dressing materials and the current knowledge on wound dressings and emerging technologies to achieve proper wound healing.

Recent Findings

Traditional and modern dressings are helpful in the wound healing process; however, they cannot substitute lost tissue. Human skin equivalents have been developed conceptually to fill this void as they do not only facilitate wound healing but also may replace lost tissue. Several studies have shown that the addition of mesenchymal stem cells, such as in human placenta, has promising results in wound healing.

Summary

A wound is defined as a disruption in the continuity of the skin or mucosa due to physical or thermal damage, or an underlying medical condition. Wound healing is a complex, dynamic, and multistep process which occurs after skin damage leading to tissue repair. Although the skin normally undergoes repair after a disruption, the healing process can be affected in different conditions such as diabetes mellitus, infections, venous/arterial insufficiency, among others. To enhance healing, a wide range of wound dressings are available; however, a thorough wound assessment (e.g., wound type, size, depth, or color) is required to choose the appropriate dressing. The emergence of new dressings has brought a new perspective of wound healing, but there is no superior product yet to treat acute and/or chronic wounds. Therefore, wound dressing research studies need to be carried out in order to help improve wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DFU:

Diabetic foot ulcer

dHACM:

Dehydrated human amnion/chorion membrane

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HA:

Hyaluronic acid

HSE:

Human skin equivalents

IGF-1:

Insulin-like growth factor

MSC:

Mesenchymal stem cell

PDGF:

Platelet-derived growth factor

RCT:

Randomized control trial

sNAG:

Shortened nanofibers of poly-N-acetyl glucosamine

TGF-β1:

Transforming growth factor

VLU:

Venous leg ulcer

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.

    Article  CAS  PubMed  Google Scholar 

  2. Dhivya S, Padma VV, Santhini E. Wound dressings—a review. Biomedicine (Taipei). 2015;5(4):22. Comprehensive review article that offers a critical discussion of several kinds of wound dressings.

  3. Percival JN. Classification of wounds and their management. Surgery. 2002;20:114–7.

    Google Scholar 

  4. Moore K, McCallion R, Searle RJ, Stacey MC, Harding KG. Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J. 2006;3(2):89–96.

    Article  PubMed  Google Scholar 

  5. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–85.

  6. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pereira RF, Bártolo PJ. Traditional therapies for skin wound healing. Adv Wound Care (New Rochelle). 2016;5(5):208–29.

    Article  Google Scholar 

  8. Weller C, Sussman G. Wound dressings update. J Pharm Pract Res. 2006;36:318–24. Review article which covers a thorough description in wound assessment and different types of wound dressings.

  9. Daunton C, Kothari S, Smith L, Steele D. A history of materials and practices for wound management. Wound Pract Res. 2012;20:174–86.

    Google Scholar 

  10. Shah JB. The history of wound care. J Am Col Certif Wound Spec. 2011;3(3):65–6.

    PubMed  Google Scholar 

  11. Jones VJ. The use of gauze: will it ever change? Int Wound J. 2006;3(2):79–86.

    Article  PubMed  Google Scholar 

  12. Sung KY, Lee SY. Nonoperative management of extravasation injuries associated with neonatal parenteral nutrition using multiple punctures and a hydrocolloid dressing. Wounds. 2016;28(5):145–51.

    PubMed  Google Scholar 

  13. Koksal C, Bozkurt AK. Combination of hydrocolloid dressing and medical compression stockings versus Unna’s Boot for the treatment of venous leg ulcers. Swiss Med Wkly. 2003;133(25–26):364–8.

    PubMed  Google Scholar 

  14. Jiang Q, Zhou W, Wang J, Tang R, Zhang D, Wang X. Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. Int J Biol Macromol. 2016;91:85–91.

    Article  CAS  PubMed  Google Scholar 

  15. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–8.

    Article  Google Scholar 

  16. Jayakumar R, Rajkumar M, Freitas H, Selvamurugan N, Nair SV, Furuike T, et al. Preparation, characterization, bioactive and metal uptake studies of alginate/phosphorylated chitin blend films. Int J Biol Macromol. 2009;44(1):107–11.

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Qisheng G, Zhao J, Mei J, Shao M, Pan Y, et al. Calcium alginate enhances wound healing by up-regulating the ratio of collagen types I/III in diabetic rats. Int J Clin Exp Pathol. 2015;8(6):6636–45.

    PubMed  PubMed Central  Google Scholar 

  18. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–42.

    Article  CAS  PubMed  Google Scholar 

  19. Kurczewska J, Sawicka P, Ratajczak M, Gajęcka M, Schroeder G. Will the use of double barrier result in sustained release of vancomycin? Optimization of parameters for preparation of a new antibacterial alginate-based modern dressing. Int J Pharm. 2015;496(2):526–33.

    Article  CAS  PubMed  Google Scholar 

  20. Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;2(6):511–21.

    Article  Google Scholar 

  21. Blair SD, Jarvis P, Salmon M, McCollum C. Clinical trial of calcium alginate haemostatic swabs. Br J Surg. 1990;77:568–70.

    Article  CAS  PubMed  Google Scholar 

  22. Blair SD, Backhouse CM, Harper R, Matthews J, McCollum CN. Comparison of absorbable materials for surgical haemostasis. Br J Surg. 1988;75:69–71.

    Article  Google Scholar 

  23. Segal HC, Hunt BJ, Gilding K. The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J Biomater Appl. 1998;12:249–57.

    CAS  PubMed  Google Scholar 

  24. Thomas A, Harding KG, Moore K. Alginates from wound dressings activate human macrophages to secrete tumor necrosis factor-alpha. Biomaterials. 2000;21(17):1797–802.

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt RJ, Turner TD. Calcium alginate dressings. Pharm J. 1986;236:578.

    Google Scholar 

  26. Doyle JW, Roth T, Smith M. Effects of calcium alginate on cellular wound healing processes modelled in vitro. J Biomed Mater Res. 1996;32(4):561–8.

  27. Morgan DA. Wounds: what should a dressing formulary include? Hosp Pharm. 2009;9:261–6.

    Google Scholar 

  28. Vermeulen H, Ubbink DT, Goossens A, de Vos R, Legemate DA. Systematic review of dressings and topical agents for surgical wounds healing by secondary intention. Br J Surg. 2005;92(6):665–72. Epidemiological study which highlights the differences between dressings and topical agents.

  29. Ramos-e-Silva M, Ribeiro de Castro MC. New dressings, including tissue-engineered living skin. Clin Dermatol. 2002;20(6):715–23.

    Article  PubMed  Google Scholar 

  30. Ramshaw JA, Werkmeister JA, Glattauer V. Collagen-based biomaterials. Biotechnol Genet Eng Rev. 1996;13:335–82.

    Article  CAS  PubMed  Google Scholar 

  31. González A. Use of collagen extracellular matrix dressing for the treatment of a recurrent venous ulcer in a 52-year-old patient. J Wound Ostomy Continence Nurs. 2016;43(3):310–2.

    Article  PubMed  Google Scholar 

  32. Doillon CJ, Silver FH. Collagen-based wound dressing: effects of hyaluronic acid and fibronectin on wound healing. Biomaterials. 1986;7(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lee M, Han SH, Choi WJ, Chung KH, Lee JW. Hyaluronic acid dressing (Healoderm) in the treatment of diabetic foot ulcer: a prospective, randomized, placebo-controlled, single-center study. Wound Repair Regen. 2016;24(3):581–8.

    Article  PubMed  Google Scholar 

  34. Ferrari R, Boracchi P, Romussi S, Ravasio G, Stefanello D. Application of hyaluronic acid in the healing of non-experimental open wounds: a pilot study on 12 wounds in 10 client-owned dogs. Vet World. 2015;8(10):1247–59.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002;23(3):833–40.

    Article  CAS  PubMed  Google Scholar 

  36. Abdel-Mohsen AM, Jancar J, Massoud D, Fohlerova Z, Elhadidy H, Spotz Z, et al. Novel chitin/chitosan-glucan wound dressing: isolation, characterization, antibacterial activity and wound healing properties. Int J Pharm. 2016;510(1):86–99.

    Article  CAS  PubMed  Google Scholar 

  37. Anjum S, Arora A, Alam MS, Gupta B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm. 2016;508(1–2):92–101.

    Article  CAS  PubMed  Google Scholar 

  38. Fan X, Chen K, He X, Li N, Huang J, Tang K, et al. Nano-TiO2/collagen-chitosan porous scaffold for wound repairing. Int J Biol Macromol. 2016;91:15–22.

    Article  CAS  PubMed  Google Scholar 

  39. Choi SM, Ryu HA, Lee KM, Kim HJ, Park IK, Cho WJ, et al. Development of stabilized growth factor-loaded hyaluronate-collagen dressing (HCD) matrix for impaired wound healing. Biomater Res. 2016;20:9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Catanzano O, D’Esposito V, Acierno S, Ambrosio MR, De Caro C, Avagliano C, et al. Alginate-hyaluronan composite hydrogels accelerate wound healing process. Carbohydr Polym. 2015;131:407–14.

    Article  CAS  PubMed  Google Scholar 

  41. Mian M, Beghè F, Mian E. Collagen as a pharmacological approach in wound healing. Int J Tissue React. 1992;14(Suppl):1–9.

    CAS  PubMed  Google Scholar 

  42. Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev. 2003;55(12):1679–98.

    Article  CAS  PubMed  Google Scholar 

  43. Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl. 2015;48:651–62. Analytical review of wound dressings based on biocompatible polymers.

  44. Dreifke MB, Ebraheim NA, Jayasuriya AC. Investigation of potential injectable polymeric biomaterials for bone regeneration. J Biomed Mater Res A. 2013;101(8):2436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Turley EA, Torrance J. Localization of hyaluronate and hyaluronate-binding protein on motile and non-motile fibroblasts. Exp Cell Res. 1985;161(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  46. Moczar M, Robert L. Stimulation of cell proliferation by hyaluronidase during in vitro aging of human skin fibroblasts. Exp Gerontol. 1993;28(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  47. Ghazi K, Deng-Pichon U, Warnet JM, Rat P. Hyaluronan fragments improve wound healing on in vitro cutaneous model through P2X7 purinoreceptor basal activation: role of molecular weight. PLoS One. 2012;7(11):e48351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdel-Mohsen AM, Jancar J, Massoud D, Fohlerova Z, Elhadidy H, Spotz Z, Hebeish A. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int J Pharm. 2016;510(1):86–99.

  49. Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev. 2001;52(2):105–15.

    Article  CAS  PubMed  Google Scholar 

  50. Moura LI, Dias AM, Leal EC, Carvalho L, de Sousa HC, Carvalho E. Chitosan-based dressings loaded with neurotensin—an efficient strategy to improve early diabetic wound healing. Acta Biomater. 2014;10(2):843–57.

    Article  CAS  PubMed  Google Scholar 

  51. Kirichenko AK, Bolshakov IN, Ali-Riza AE, Vlasov AA. Morphological study of burn wound healing with the use of collagen-chitosan wound dressing. Bull Exp Biol Med. 2013;154(5):692–6.

    Article  CAS  PubMed  Google Scholar 

  52. Choi JS, Kim JD, Yoon HS, Cho YW. Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng Part A. 2013;19(3–4):329–39.

    Article  CAS  PubMed  Google Scholar 

  53. Wojtowicz AM, Oliveira S, Carlson MW, Zawadzka A, Rousseau CF, Baksh D. The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair Regen. 2014;22(2):246–55.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nathoo R, Howe N, Cohen G. Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol. 2014;7(10):44–8.

    PubMed  PubMed Central  Google Scholar 

  55. Centanni JM, Straseski JA, Wicks A, et al. StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial. Ann Surg. 2011;253(4):672–83.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun T, Han Y, Chai J, Yang H. Transplantation of microskin autografts with overlaid selectively decellularized split thickness porcine skin in the repair of deep burn wounds. J Burn Care Res. 2011;32(3):e67–73.

    Article  PubMed  Google Scholar 

  57. Marston WA, Hanft J, Norwood P, Pollak R, Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers, results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–5.

    Article  PubMed  Google Scholar 

  58. Límová M. Active wound coverings: bioengineered skin and dermal substitutes. Surg Clin North Am. 2010;90(6):1237–55.

    Article  PubMed  Google Scholar 

  59. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 1999;7(4):201–7.

    Article  CAS  PubMed  Google Scholar 

  60. Marston WA, Sabolinski ML, Parsons NB, Kirsner RS. Comparative effectiveness of a bilayered living cellular construct and a porcine collagen wound dressing in the treatment of venous leg ulcers. Wound Repair Regen. 2014;22(3):334–40.

    Article  PubMed  Google Scholar 

  61. Falabella AF, Valencia IC, Eaglstein WH, Schachner LA. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch Dermatol. 2000;136(10):1225–30.

    Article  CAS  PubMed  Google Scholar 

  62. Muhart M, McFalls S, Kirsner RS, Elgart GW, Kerdel F, Sabolinski ML, et al. Behavior of tissue-engineered skin: a comparison of a living skin equivalent, autograft, and occlusive dressing in human donor sites. Arch Dermatol. 1999;135(8):913–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mathur M, De A, Gore M. Microbiological assessment of cadaver skin grafts received in a Skin Bank. Burns. 2009;35(1):104–6.

    Article  PubMed  Google Scholar 

  64. Brigido SA. The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: a prospective 16-week pilot study. Int Wound J. 2006;3(3):181–7.

    Article  PubMed  Google Scholar 

  65. González Alaña I, Torrero López JV, Martín Playá P, Gabilondo Zubizarreta FJ. Combined use of negative pressure wound therapy and Integra® to treat complex defects in lower extremities after burns. Ann Burns Fire Disasters. 2013;26(2):90–3.

    PubMed  PubMed Central  Google Scholar 

  66. Park CA, Defranzo AJ, Marks MW, Molnar JA. Outpatient reconstruction using Integra and sub atmospheric pressure. Ann Plast Surg. 2009;62(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  67. Molnar JA, DeFranzo AJ, Hadaegh A, Morykwas MJ, Shen P, Argenta LC. Acceleration of Integra incorporation in complex tissue defects with sub atmospheric pressure. Plast Reconstr Surg. 2004;113(5):1339–46.

    Article  PubMed  Google Scholar 

  68. Raimer DW, Group AR, Petitt MS, Nosrati N, Yamazaki ML, Davis NA, et al. Porcine xenograft biosynthetic wound dressings for the management of postoperative Mohs wounds. Dermatol Online J. 2011;17(9):1.

    PubMed  Google Scholar 

  69. Romanelli M, Dini V, Bertone MS. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care. 2010;23(1):34–8.

    Article  PubMed  Google Scholar 

  70. Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D, OASIS Venus Ulcer Study Group. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837–43. One of the first papers to show the effectiveness of this graft in VLUs. This paper may have increased the frequency of using this graft for VLUs treatment.

  71. Palmer BL, Gantt DS, Lawrence ME, Rajab MH, Dehmer GJ. Effectiveness and safety of manual hemostasis facilitated by the SyvekPatch with one hour of bedrest after coronary angiography using six-French catheters. Am J Cardiol. 2004;93(1):96–7.

    Article  PubMed  Google Scholar 

  72. Lindner HB, Zhang A, Eldridge J, Demcheva M, Tsichlis P, et al. Anti-bacterial effects of poly-N-acetyl-glucosamine nanofibers in cutaneous wound healing: requirement for Akt1. PLoS One. 2011;6(4):e18996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pietramaggiori G, Yang HJ, Scherer SS, Kaipainen A, Chan RK, et al. Effects of poly-N-acetyl glucosamine (pGlcNAc) patch on wound healing in db/db mouse. J Trauma. 2008;64(3):803–8.

    Article  CAS  PubMed  Google Scholar 

  74. Scherer SS, Pietramaggiori G, Matthews J, Perry S, Assmann A, et al. Poly-N-acetyl glucosamine nanofibers: a new bioactive material to enhance diabetic wound healing by cell migration and angiogenesis. Ann Surg. 2009;250(2):322–30.

    Article  PubMed  Google Scholar 

  75. Kelechi TJ, Mueller M, Hankin CS, Bronstone A, Samies J, et al. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol. 2012;66(6):e209–15.

    Article  CAS  PubMed  Google Scholar 

  76. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1(2):142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shin L, Peterson DA. Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med. 2013;2(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  78. Faulk WP, Matthews R, Stevens PJ, Bennett JP, Burgos H, et al. Human amnion as an adjunct in wound healing. Lancet. 1980;1:1156–8.

    Article  CAS  PubMed  Google Scholar 

  79. Gibbons GW. Grafix®, a cryopreserved placental membrane, for the treatment of chronic/stalled wounds. Adv Wound Care (New Rochelle). 2015;4(9):534–44.

    Article  Google Scholar 

  80. Lavery LA, Fulmer J, Shebetka KA, et al. The efficacy and safety of Grafix((R)) for the treatment of chronic diabetic foot ulcers: results of a multicentre, controlled, randomized, blinded, clinical trial. Int Wound J. 2014;11:554–60. Seminal study which demonstrates this graft as a good option for DFUs. This paper may have expanded this graft use to other pathologies.

  81. Regulski M, Jacobstein DA, Petranto RD, Migliori VJ, Nair G, et al. A retrospective analysis of a human cellular repair matrix for the treatment of chronic wounds. Ostomy Wound Manage. 2013;59:38–43.

    PubMed  Google Scholar 

  82. Zelen CM, Serena TE, Denoziere G, Fetterolf DE. A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J. 2013;10(5):502–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fetterolf DE, Istwan NB, Stanziano GJ. An evaluation of healing metrics associated with commonly used advanced wound care products for the treatment of chronic diabetic foot ulcers. Manag Care. 2014;23:31–8.

    PubMed  Google Scholar 

  84. Zelen CM, Gould L, Serena TE, Carter MJ, Keller J, Li WW. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int Wound J. 2015;12(6):724–32.

    Article  PubMed  Google Scholar 

  85. Amin N, Doupis J. Diabetic foot disease: from the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016;7(7):153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Phaechamud T, Issarayungyuen P, Pichayakorn W. Gentamicin sulfate-loaded porous natural rubber films for wound dressing. Int J Biol Macromol. 2016;85:634–44.

    Article  CAS  PubMed  Google Scholar 

  87. Meaume S, Vallet D, Morere MN, Téot L. Evaluation of a silver-releasing hydroalginate dressing in chronic wounds with signs of local infection. J Wound Care. 2005;14(9):411–9.

    Article  CAS  PubMed  Google Scholar 

  88. Denkbaş EB, Oztürk E, Ozdemir N, Keçeci K, Agalar C. Norfloxacin-loaded chitosan sponges as wound dressing material. J Biomater Appl. 2004;18(4):291–303.

    Article  CAS  PubMed  Google Scholar 

  89. Aoyagi S, Onishi H, Machida Y. Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int J Pharm. 2007;330(1–2):138–45.

    Article  CAS  PubMed  Google Scholar 

  90. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Komarcević A. The modern approach to wound treatment. Med Pregl. 2000;53(7–8):363–8 [Article in Croatian].

    PubMed  Google Scholar 

  92. Huang G, Sun T, Zhang L, Wu Q, Zhang K, Tian Q, et al. Combined application of alginate dressing and human granulocyte-macrophage colony stimulating factor promotes healing in refractory chronic skin ulcers. Exp Ther Med. 2014;7(6):1772–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yan H, Chen J, Peng X. Recombinant human granulocyte-macrophage colony-stimulating factor hydrogel promotes healing of deep partial thickness burn wounds. Burns. 2012;38(6):877–81.

    Article  PubMed  Google Scholar 

  94. Da Costa RM, Ribeiro Jesus FM, Aniceto C, Mendes M. Randomized, double-blind, placebo-controlled, dose-ranging study of granulocyte-macrophage colony stimulating factor in patients with chronic venous leg ulcers. Wound Repair Regen. 1999;7(1):17–25.

    Article  PubMed  Google Scholar 

  95. Khanbanha N, Atyabi F, Taheri A, Talaie F, Mahbod M, Dinarvand R. Healing efficacy of an EGF impregnated triple gel based wound dressing: in vitro and in vivo studies. Biomed Res Int. 2014;2014:493732.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shi L, Ermis R, Kiedaisch B, Carson D. The effect of various wound dressings on the activity of debriding enzymes. Adv Skin Wound Care. 2010;23(10):456–62.

    Article  PubMed  Google Scholar 

  97. Ramundo J, Gray M. Enzymatic wound debridement. J Wound Ostomy Continence Nurs. 2008;35:273–80.

    Article  PubMed  Google Scholar 

  98. Miller JD, Carter E, Hatch DC, Zhubrak M, Giovinco NA, Armstrong DG. Use of collagenase ointment in conjunction with negative pressure wound therapy in the care of diabetic wounds: a case series of six patients. Diabet Foot Ankle. 2015;6:24999.

    PubMed  Google Scholar 

  99. Singh D, Singh R. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation. Radiat Phys Chem. 2012;81:1781–5.

    Article  CAS  Google Scholar 

  100. Mustafah NM, Chung TY. Papase as a treatment option for the overgranulating wound. J Wound Care. 2014;23(2 Suppl):S10–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Kirsner.

Ethics declarations

Conflict of Interest

Luis J. Borda and Flor E. Macquhae declare that they have no conflicts of interest to disclose.

Dr. Kirsner reports grants from Smith and Nephew, personal fees from Organogenesis, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Wound Care and Healing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borda, L.J., Macquhae, F.E. & Kirsner, R.S. Wound Dressings: A Comprehensive Review. Curr Derm Rep 5, 287–297 (2016). https://doi.org/10.1007/s13671-016-0162-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-016-0162-5

Keywords

Navigation