Advertisement

Current Dermatology Reports

, Volume 5, Issue 4, pp 244–251 | Cite as

Human as the Ultimate Wound Healing Model: Strategies for Studies Investigating the Dermal Lipidome

  • Dayanjan S. WijesingheEmail author
  • Urszula Osinska Warncke
  • Robert F. Diegelmann
Wound Care and Healing (A Friedman, Section Editor)
  • 711 Downloads
Part of the following topical collections:
  1. Topical Collection on Wound Care and Healing

Abstract

Purpose of Review

The purpose of this review was to educate the reader of the multiple roles undertaken by the human epidermal lipidome and the experimental techniques of measuring them.

Recent Findings

Damage to skin elicits a wound healing process that is capped by the recreation of the lipid barrier. In addition to barrier function, lipids also undertake an active signaling role during wound healing. Achievement of these multiple functions necessitates a significant complexity and diversity in the lipidome resulting in a composition that is unique to the human skin. As such, any attempts to delineate the function of the lipidome during the wound healing process in humans need to be addressed via studies undertaken in humans.

Summary

The human cutaneous lipidome is unique and plays a functionally significant role in maintaining barrier and regulating wound healing. Modern mass spectrometry and Raman spectroscopy-based methods enable the investigation of epidermal lipidome with respect to those functions.

Keywords

Wound healing Bioactive lipids Analytical methods Sampling techniques Human 

Notes

Acknowledgments

Research reported in this publication was supported by research grants from National Institutes of Health under grant numbers HD087198 (DSW). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additionally, this work was also supported by a Career Development Award 1 (to DSW) and via a Young Investigator Award from SCIEX for clinical lipidomic research (DSW). The project was also supported by CTSA award number UL1TR000058 from the National Center for Advancing Translational Sciences which provides tuition and stipend funds to UOW. Lastly, services and products in support of the research project were generated by the VCU Massey Cancer Center Lipidomics Shared Resource [Developing Core], supported, in part, with funding from NIH-NCI Cancer Center Support Grant P30 CA016059 as well as a shared resource grant [S10RR031535] from the National Institutes of Health. The contents of this manuscript do not represent the views of the Department of Veterans Affairs, National Center for Advancing Translational Sciences or the National Institutes of Health, the National Institute of Health nor the United States Government. We graciously acknowledge the generosity of Dr. Chalfant in allowing us to use the ceramide data generated by us and depicted in Fig. 1.

Compliance with Ethical Standards

Conflict of Interest

Dayanjan S Wijesinghe, Urszula Osinska Warncke, and Robert F. Diegelmann declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. All human studies were carried out under the approval of the Institutional Review Board (IRB) of VCU-School of Medicine (IRB number 11087) and written informed consent was obtained from all participants.

References

Recently Published Papers of Particular Interest Have Been Highlighted as: • Of Importance

  1. 1.
    Nicolaides N. Skin lipids: their biochemical uniqueness. Science. 1974;186:19–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Rogers J, Harding C, Mayo A, Banks J, Rawlings A. Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res. 1996;288:765–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Muizzuddin N, Hellemans L, Van Overloop L, Corstjens H, Declercq L, Maes D. Structural and functional differences in barrier properties of African American, Caucasian and East Asian skin. J Dermatol Sci. 2010;59:123–8.CrossRefPubMedGoogle Scholar
  4. 4.•
    Pappas A, Fantasia J, Chen T. Age and ethnic variations in sebaceous lipids. Dermatoendocrinol. 2013;5:319–24. Demonstrates the variability of the skin surface lipidome among humans CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM. Human stratum corneum lipids: characterization and regional variations. J Lipid Res. 1983;24:120–30.PubMedGoogle Scholar
  6. 6.
    Tingstad JE, Wurster DE, Higuchi T. Investigation of human skin lipids II. J Am Pharm Assoc Sci Ed. 1958;47:192–3.CrossRefGoogle Scholar
  7. 7.
    Picardo M, Ottaviani M, Camera E, Mastrofrancesco A. Sebaceous gland lipids. Dermatoendocrinol. 2009;1:68–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fischer CL, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertz PW. Antibacterial activity of sphingoid bases and fatty acids against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2012;56:1157–61.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49:4–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Cossette C, Patel P, Anumolu JR, Sivendran S, Lee GJ, Gravel S, Graham FD, Lesimple A, Mamer OA, Rokach J, Powell WS. Human neutrophils convert the sebum-derived polyunsaturated fatty acid sebaleic acid to a potent granulocyte chemoattractant. J Biol Chem. 2008;283:11234–43.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Smith KR, Thiboutot DM. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res. 2008;49:271–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Motta S, Monti M, Sesana S, Mellesi L, Ghidoni R, Caputo R. Abnormality of water barrier function in psoriasis: role of ceramide fractions. Arch Dermatol. 1994;130:452–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Hon KL, Leung AKC, Barankin B. Barrier repair therapy in atopic dermatitis: an overview. Am J Clin Dermatol. 2013;14:389–99.CrossRefPubMedGoogle Scholar
  14. 14.
    Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie. 2009;91:784–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol. 1998;78:27–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Elias PM. Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 1983;80:44s–9s.CrossRefGoogle Scholar
  17. 17.
    Wijesinghe DS, Brentnall M, Mietla JA, Hoeferlin LA, Diegelmann RF, Boise LH, Chalfant CE. Ceramide kinase is required for a normal eicosanoid response and the subsequent orderly migration of fibroblasts. J Lipid Res. 2014;55:1298–309.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.•
    Nicolaou A. Eicosanoids in skin inflammation. Prostaglandins Leukot Essent Fat Acids PLEFA. 2013;88:131–8. Provides an excellent description of how eicosanoids are involved in the regulation of skin inflammation CrossRefGoogle Scholar
  19. 19.
    Hoeferlin LA, Huynh QK, Mietla JA, Sell SA, Tucker J, Chalfant CE, Wijesinghe DS. The lipid portion of activated platelet-rich plasma significantly contributes to its wound healing properties. Adv. Wound Care. 2015;4:100–9.CrossRefGoogle Scholar
  20. 20.
    Sun L, Xu L, Henry FA, Spiegel S, Nielsen TB. A new wound healing agent—sphingosylphosphorylcholine. J. Invest. Dermatol. 1996;106:232–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu K-P, Yin J, Yu F-SX. Lysophosphatidic acid promoting corneal epithelial wound healing by transactivation of epidermal growth factor receptor. Invest Ophthalmol Vis Sci. 2007;48:636–43.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hellmann J, Tang Y, Spite M. Pro-resolving lipid mediators and diabetic wound healing. Curr Opin Endocrinol Diabetes Obes. 2012;19:104–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ishikawa J, Narita H, Kondo N, Hotta M, Takagi Y, Masukawa Y, Kitahara T, Takema Y, Koyano S, Yamazaki S, Hatamochi A. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 2010;130:2511–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Yamamoto A, Serizawa S, Ito M, Sato Y. Stratum corneum lipid abnormalities in atopic dermatitis. Arch Dermatol Res. 1991;283:219–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Schäfer L, Kragballe K. Abnormalities in epidermal lipid metabolism in patients with atopic dermatitis. J. Invest. Dermatol. 1991;96:10–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Kleuser B, Japtok L. Sphingolipids and inflammatory diseases of the skin. Handb Exp Pharmacol. 2013;10.Google Scholar
  27. 27.
    Higuchi K, Hara J, Okamoto R, Kawashima M, Imokawa G. The skin of atopic dermatitis patients contains a novel enzyme, glucosylceramide sphingomyelin deacylase, which cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. Biochem J. 2000;350:747–56.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Ceramide composition of the psoriatic scale. Biochim Biophys Acta BBA-Mol Basis Dis. 1993;1182:147–51.CrossRefGoogle Scholar
  29. 29.
    Alessandrini F, Stachowitz S, Ring J, Behrendt H. The level of prosaposin is decreased in the skin of patients with psoriasis vulgaris. J. Invest. Dermatol. 2001;116:394–400.CrossRefPubMedGoogle Scholar
  30. 30.
    Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K. Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem. 1999;274:11038–45.CrossRefPubMedGoogle Scholar
  31. 31.
    Grabowski GA. Gaucher disease and other storage disorders. ASH Educ Program Book. 2012;2012:13–8.Google Scholar
  32. 32.
    Holleran WM, Ginns EI, Menon GK, Grundmann JU, Fartasch M, McKinney CE, Elias PM, Sidransky E. Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest. 1994;93:1756–64.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Castiel-Higounenc I, Chopart M, Ferraris C. Stratum corneum lipids: specificity, role, deficiencies and modulation. Ol Corps Gras Lipides. 2004;11:401–6.CrossRefGoogle Scholar
  34. 34.
    Mourelatos K, Eady EA, Cunliffe WJ, Clark SM, Cove JH. Temporal changes in sebum excretion and propionibacterial colonization in preadolescent children with and without acne. Br J Dermatol. 2007;156:22–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Harris HH, Downing DT, Stewart ME, Strauss JS. Sustainable rates of sebum secretion in acne patients and matched normal control subjects. J Am Acad Dermatol. 1983;8:200–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Piérard-Franchimont C, Piérard GE, Saint-Léger D, Lévêque JL, Kligman AM. Comparison of the kinetics of sebum secretion in young women with and without acne. Dermatologica. 1991;183:120–2.CrossRefPubMedGoogle Scholar
  37. 37.
    Ottaviani M, Camera E, Picardo M, Ottaviani M, Camera E, Picardo M. Lipid mediators in acne, lipid mediators in acne. Mediat Inflamm Mediat Inflamm. 2010;2010:e858176.Google Scholar
  38. 38.
    Meckfessel MH, Brandt S. The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J Am Acad Dermatol. 2014;71:177–84.CrossRefPubMedGoogle Scholar
  39. 39.
    Rabasco Álvarez, A. M., González Rodríguez, M. L., and et al. [2000] Lipids in pharmaceutical and cosmetic preparations. [online] https://idus.us.es/xmlui/handle/11441/17554 [Accessed July 6, 2016]
  40. 40.
    Clausen M-L, Slotved H-C, Krogfelt KA, Agner T. Tape stripping technique for stratum corneum protein analysis. Sci Rep. 2016;6:19918.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hendrix SW, Miller KH, Youket TE, Adam R, O’Connor RJ, Morel JG, Tepper BE. Optimization of the skin multiple analyte profile bioanalytical method for determination of skin biomarkers from D-Squame tape samples. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI. 2007;13:330–42.Google Scholar
  42. 42.
    Widgerow AD, King K, Tocco-Tussardi I, Banyard DA, Chiang R, Awad A, Afzel H, Bhatnager S, Melkumyan S, Wirth G, Evans GRD. The burn wound exudate-an under-utilized resource. Burns J Int Soc Burn Inj. 2015;41:11–7.CrossRefGoogle Scholar
  43. 43.
    Danielsen PL, Jorgensen LN, Jørgensen B, Karlsmark T, Agren MS. Erythema persists longer than one year in split-thickness skin graft donor sites. Acta Derm Venereol. 2013;93:281–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Lawrence JC, Ameen H. Swabs and other sampling techniques. J Wound Care. 1998;7:232–3.PubMedGoogle Scholar
  45. 45.
    Yang S, Kampp J. Common dermatologic procedures. Med Clin North Am. 2015;99:1305–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Nwomeh BC, Liang HX, Diegelmann RF, Cohen IK, Yager DR. Dynamics of the matrix metalloproteinases MMP-1 and MMP-8 in acute open human dermal wounds. Wound Repair Regen. 1998;6:127–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Efron, D. T., and Barbul, A. [2003] Subcutaneous Sponge Models in Wound Healing: Methods and Protocols [DiPietro, L. A. ed], pp. 83–93, Humana Press Inc., Totowa, New JerseyGoogle Scholar
  48. 48.
    Alaish SM, Bettinger DA, Olutoye OO, Gould LJ, Yager DR, Davis A, Crossland MC, Diegelmann RF, Cohen I. Comparison of the polyvinyl alcohol [PVA] and ePTFE [Impra®] subcutaneous implants as models to evaluate wound healing potential in humans. Wound Repair Regen. 1995;3:292–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Jorgensen LN, Olsen L, Kallehave F, Karlsmark T, Diegelmann RF, Cohen IK, Gottrup F. The wound healing process in surgical patients evaluated by the ePTFE and the polyvinyl alcohol sponge: a comparison with special reference to the intra-patient variation. Wound Repair Regen. 1995;3:527–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Jorgensen LN, Madsen SM, Gottrup F. Implantable wound healing models and the determination of subcutaneous collagen deposition in expanded polytetrafluoroethylene implants. Methods Mol Med. 2003;78:263–73.PubMedGoogle Scholar
  51. 51.
    Diegelmann RF, Lindblad WJ, Cohen IK. A subcutaneous implant for wound healing studies in humans. J Surg Res. 1986;40:229–37.CrossRefPubMedGoogle Scholar
  52. 52.
    Oswal V, Belle A, Diegelmann R, Najarian K. Comput. Math Methods Med. 2013;2013:592790.Google Scholar
  53. 53.
    Boniforti L, Passi S, Caprilli F, Porro MN. Skin surface lipids. Identification and determination by thin-layer chromatography and gas-liquid chromatography. Clin Chim Acta. 1973;47:223–31.CrossRefPubMedGoogle Scholar
  54. 54.
    Wertz PW, Schwartzendruber DC, Madison KC, Downing DT. Composition and morphology of epidermal cyst lipids. J. Invest. Dermatol. 1987;89:419–25.CrossRefPubMedGoogle Scholar
  55. 55.
    Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res. 2009;50:1708–19.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Weerheim A, Ponec M. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch Dermatol Res. 2001;293:191–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Long SA, Wertz PW, Strauss JS, Downing DT. Human stratum corneum polar lipids and desquamation. Arch Dermatol Res. 277:284–7.Google Scholar
  58. 58.
    Wertz PW, Miethke MC, Long SA, Strauss JS, Downing DT. The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol. 1985;84:410–2.CrossRefPubMedGoogle Scholar
  59. 59.
    Do UH, Pei PT, Minard RD. Separation of molecular species of ceramides as benzoyl andp-nitrobenzoyl derivatives by high performance liquid chromatography. Lipids. 1981;16:855–62.CrossRefGoogle Scholar
  60. 60.
    Masukawa Y, Tsujimura H, Imokawa G. A systematic method for the sensitive and specific determination of hair lipids in combination with chromatography. J Chromatogr B. 2005;823:131–42.CrossRefGoogle Scholar
  61. 61.
    Pons A, Timmerman P, Leroy Y, Zanetta J-P. Gas-chromatography/mass-spectrometry analysis of human skin constituents as heptafluorobutyrate derivatives with special reference to long-chain bases. J Lipid Res. 2002;43:794–804.PubMedGoogle Scholar
  62. 62.
    Michael-Jubeli R, Bleton J, Baillet-Guffroy A. High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling. J Lipid Res. 2011;52:143–51.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res. 2011;52:1211–21.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    van Smeden J, Boiten WA, Hankemeier T, Rissmann R, Bouwstra JA, Vreeken RJ. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim Biophys Acta BBA-Mol Cell Biol Lipids. 2014;1841:70–9.CrossRefGoogle Scholar
  65. 65.
    Masukawa Y, Narita H, Shimizu E, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T, Takema Y, Kita K. Characterization of overall ceramide species in human stratum corneum. J Lipid Res. 2008;49:1466–76.CrossRefPubMedGoogle Scholar
  66. 66.
    Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res. 2013;52:141–64.CrossRefPubMedGoogle Scholar
  67. 67.•
    Wijesinghe DS, Chalfant CE. Systems-level lipid analysis methodologies for qualitative and quantitative investigation of lipid signaling events during wound healing. Adv Wound Care. 2013;2:538–48. Provides detailed information with respect to tha application of mass spectrometry methods to study lipid changes during wound healing CrossRefGoogle Scholar
  68. 68.
    Dhall S, Wijesinghe DS, Karim ZA, Castro A, Vemana HP, Khasawneh FT, Chalfant CE, Martins-Green M. Arachidonic acid-derived signaling lipids and functions in impaired healing. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2015;23:644–56.Google Scholar
  69. 69.
    Dhall S, Do D, Garcia M, Wijesinghe DS, Brandon A, Kim J, Sanchez A, Lyubovitsky J, Gallagher S, Nothnagel EA, Chalfant CE, Patel RP, Schiller N, Martins-Green M. A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity. PLoS One. 2014;9:e109848.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lima EO, de Macedo CS, Esteves CZ, de Oliveira DN, Pessolani MC, Nery JA, Sarno EN, Catharino RR. Skin imprinting in silica plates: a potential diagnostic methodology for leprosy using high-resolution mass spectrometry. Anal Chem. 2015;87:3585–92.CrossRefGoogle Scholar
  71. 71.
    Hart PJ, Francese S, Claude E, Woodroofe MN, Clench MR. MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem. 2011;401:115–25.CrossRefPubMedGoogle Scholar
  72. 72.
    Tfayli A, Jamal D, Vyumvuhore R, Manfait M, Baillet-Guffroy A. Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5. Analyst. 2013;138:6582–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Tfayli A, Guillard E, Manfait M, Baillet-Guffroy A. Raman spectroscopy: feasibility of in vivo survey of stratum corneum lipids, effect of natural aging. Eur J Dermatol EJD. 2012;22:36–41.PubMedGoogle Scholar
  74. 74.
    Chrit L, Hadjur C, Morel S, Sockalingum G, Lebourdon G, Leroy F, Manfait M. In vivo chemical investigation of human skin using a confocal Raman fiber optic microprobe. J Biomed Opt. 2005;10:44007.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dayanjan S. Wijesinghe
    • 1
    Email author
  • Urszula Osinska Warncke
    • 2
  • Robert F. Diegelmann
    • 3
  1. 1.Department of Pharmacotherapy and Outcomes SciencesVirginia Commonwealth University School of PharmacyRichmondUSA
  2. 2.C. Kenneth and Dianne Wright Center for Clinical and Translational Research (CCTR)Virginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondUSA

Personalised recommendations