Skip to main content
Log in

Nutrition and Diabetes in the Context of Inflammaging

  • Nutrition, Obesity, and Diabetes (SML Ribeiro, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To update the concepts of inflammaging and the development of insulin resistance and type 2 diabetes mellitus (T2DM); to summarize some related nutritional aspects.

Recent Findings

Inflammaging is a complex network of aging-related changes, which are associated with immunosenescence and metainflammation (the inflammation originated outside the immune system which may include the gut environment, adipose tissue, or self-molecules generated in different types of cells). The inflammatory status increases insulin resistance and, consequently, the risk of T2DM. Dietary patterns, including foods, nutrients, and bioactive compounds, can modulate inflammatory pathways and may contribute positively or negatively to inflammatory status and prevention or management to T2DM. Some examples of these dietary components are fatty acids, phytochemicals, salt, carbohydrates, among others. Studies aiming at caloric restriction (caloric restriction per se [CR] or intermittent fasting [IR]) have shown promising results. However, they need precaution when applied to older adults.

Summary

Dietary intervention on inflammaging and T2DM still deserves further studies related to its application in clinical practice. Clinical and epidemiological investigations of diet, its association with inflammaging, and T2DM should integrate different omic approaches in order to understand these complex relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and “garb-aging”. Trends Endocrinol Metab. 2017;28:199–212. https://doi.org/10.1016/j.tem.2016.09.005.

    Article  CAS  PubMed  Google Scholar 

  2. Salvioli S, Monti D, Lanzarini C, Conte M, Pirazzini C, Giulia Bacalini M, et al. Immune system, cell senescence, aging and longevity - inflamm-aging reappraised. Curr Pharm Des. 2013;19:1675–9. https://doi.org/10.2174/1381612811319090015.

    Article  CAS  PubMed  Google Scholar 

  3. •• Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576–90. https://doi.org/10.1038/s41574-018-0059-4Updated concepts of inflammaging.

    Article  CAS  PubMed  Google Scholar 

  4. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.

    Article  CAS  PubMed  Google Scholar 

  5. McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci. 2015;129:1083–96. https://doi.org/10.1042/CS20150431.

    Article  CAS  Google Scholar 

  6. • Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11:45–63 Mechanisms associating diabetes and inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Calle MC, Fernandez ML. Inflammation and type 2 diabetes. Diabetes Metab. 2012;38:183–91. https://doi.org/10.1016/j.diabet.2011.11.006.

    Article  CAS  PubMed  Google Scholar 

  8. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13:435–44. https://doi.org/10.1007/s11892-013-0375-y.

    Article  CAS  PubMed  Google Scholar 

  9. Bodogai M, O’Connell J, Kim K, Kim Y, Moritoh K, Chen C, et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med. 2018;10:eaat4271. https://doi.org/10.1126/scitranslmed.aat4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98. https://doi.org/10.1038/nrendo.2017.151.

    Article  PubMed  Google Scholar 

  11. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22:507–13. https://doi.org/10.1016/j.coi.2010.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hazeldine J, Lord JM. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology. 2015;16:187–201. https://doi.org/10.1007/s10522-014-9514-3.

    Article  CAS  PubMed  Google Scholar 

  13. Fulop T, Kotb R, Fortin CF, Pawelec G, De Angelis F, Larbi A. Potential role of immunosenescence in cancer development. Ann N Y Acad Sci. 2010;1197:158–65. https://doi.org/10.1111/j.1749-6632.2009.05370.x.

    Article  CAS  PubMed  Google Scholar 

  14. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8. https://doi.org/10.3389/fimmu.2017.01960.

  15. Alexaki V-I, Notas G, Pelekanou V, Kampa M, Valkanou M, Theodoropoulos P, et al. Adipocytes as immune cells: differential expression of TWEAK, BAFF, and APRIL and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development. J Immunol. 2009;183:5948–56. https://doi.org/10.4049/jimmunol.0901186.

    Article  CAS  PubMed  Google Scholar 

  16. Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M. Adipokines and obesity. Potential link to metabolic disorders and chronic complications. Int J Mol Sci. 2020;21:3570. https://doi.org/10.3390/ijms21103570.

    Article  CAS  PubMed Central  Google Scholar 

  17. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69. https://doi.org/10.1038/nri2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, et al. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep. 2017;7:6619. https://doi.org/10.1038/s41598-017-06997-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halcox JP, Roy C, Tubach F, Banegas JR, Dallongeville J, De Backer G, et al. C-reactive protein levels in patients at cardiovascular risk: EURIKA study. BMC Cardiovasc Disord. 2014;14:25. https://doi.org/10.1186/1471-2261-14-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daniele G, Guardado Mendoza R, Winnier D, Fiorentino TV, Pengou Z, Cornell J, et al. The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetol. 2014;51:123–31. https://doi.org/10.1007/s00592-013-0543-1.

    Article  CAS  PubMed  Google Scholar 

  21. Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev. 2019;56:100980. https://doi.org/10.1016/j.arr.2019.100980.

    Article  CAS  PubMed  Google Scholar 

  22. Eguchi K, Nagai R. Islet inflammation in type 2 diabetes and physiology. J Clin Invest. 2017;127:14–23. https://doi.org/10.1172/JCI88877.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abbatecola AM, Paolisso G. Is there a relationship between insulin resistance and frailty syndrome? Curr Pharm Des. 2008;14:405–10. https://doi.org/10.2174/138161208783497750.

    Article  CAS  PubMed  Google Scholar 

  24. Boirie Y. Physiopathological mechanism of sarcopenia. J Nutr Health Aging. 2009;13:717–23.

    Article  CAS  PubMed  Google Scholar 

  25. Castanon N, Luheshi G, Layé S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci. 2015;9:229. https://doi.org/10.3389/fnins.2015.00229.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Di Benedetto S, Müller L, Wenger E, Düzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev. 2017;75:114–28. https://doi.org/10.1016/j.neubiorev.2017.01.044.

    Article  PubMed  Google Scholar 

  27. Lee YS, Wollam J, Olefsky JM. An integrated view of immunometabolism. Cell. Elsevier Inc. 2018;172:22–40. https://doi.org/10.1016/j.cell.2017.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang C, Xu H, Guo S, Mertens-Talcott SU, Sun Y. Ghrelin signaling in immunometabolism and inflamm-aging. Adv Exp Med Biol. 2018;1090:165–82. https://doi.org/10.1007/978-981-13-1286-1_9.

    Article  CAS  PubMed  Google Scholar 

  29. Amsterdam D, Ostrov BE. The impact of the microbiome on immunosenescence. Immunol Investig. 2018;47:801–11. https://doi.org/10.1080/08820139.2018.1537570.

    Article  CAS  Google Scholar 

  30. Tiihonen K, Ouwehand AC, Rautonen N. Human intestinal microbiota and healthy ageing. Ageing Res Rev. 2010;9:107–16. https://doi.org/10.1016/j.arr.2009.10.004.

    Article  PubMed  Google Scholar 

  31. André, Laugerette, Féart. Metabolic endotoxemia: a potential underlying mechanism of the relationship between dietary fat intake and risk for cognitive impairments in humans? Nutrients. 2019;11:1887. https://doi.org/10.3390/nu11081887.

    Article  CAS  PubMed Central  Google Scholar 

  32. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81. https://doi.org/10.2337/db07-1403.

    Article  CAS  PubMed  Google Scholar 

  33. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–90. https://doi.org/10.1038/ni.2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown J, Wang H, Hajishengallis GN, Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res. 2011;90:417–27. https://doi.org/10.1177/0022034510381264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY). 2012;4:166–75. https://doi.org/10.18632/aging.100444.

    Article  CAS  Google Scholar 

  36. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–39. https://doi.org/10.1038/cdd.2014.216.

    Article  CAS  PubMed  Google Scholar 

  37. Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016;2016:8426874–12. https://doi.org/10.1155/2016/8426874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Asp Med. 2012;33:26–34. https://doi.org/10.1016/j.mam.2011.10.011.

    Article  CAS  Google Scholar 

  39. Yang J, Park Y, Zhang H, Xu X, Laine GA, Dellsperger KC, et al. Feed-forward signaling of TNF-alpha and NF-kappaB via IKK-beta pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2009;296:H1850–8. https://doi.org/10.1152/ajpheart.01199.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panickar KS, Jewell DE. The beneficial role of anti-inflammatory dietary ingredients in attenuating markers of chronic low-grade inflammation in aging. Horm Mol Biol Clin Investig. 2015;23:59–70. https://doi.org/10.1515/hmbci-2015-0017.

    Article  CAS  PubMed  Google Scholar 

  41. Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45:979–85. https://doi.org/10.1042/BST20160465.

    Article  CAS  PubMed  Google Scholar 

  42. Calle MC, Andersen CJ. Assessment of dietary patterns represents a potential, yet variable, measure of inflammatory status: a review and update. Dis Markers. 2019;2019:3102870–13. https://doi.org/10.1155/2019/3102870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bonaccio M, Di Castelnuovo A, Costanzo S, Gialluisi A, Persichillo M, Cerletti C, et al. Mediterranean diet and mortality in the elderly: a prospective cohort study and a meta-analysis. Br J Nutr. 2018;120:841–54. https://doi.org/10.1017/S0007114518002179.

    Article  CAS  PubMed  Google Scholar 

  44. •• Nowson CA, Service C, Appleton J, Grieger JA. The impact of dietary factors on indices of chronic disease in older people: a systematic review. J Nutr Health Aging. 2018;22:282–96. https://doi.org/10.1007/s12603-017-0920-5This review brings together different aspects of diet on the development of chronic diseases in aging.

    Article  CAS  PubMed  Google Scholar 

  45. Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean diet; a literature review. Nutrients. 2015;7:9139–53. https://doi.org/10.3390/nu7115459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, Pinto A. Metabolic and vascular effect of the Mediterranean diet. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20194716.

  47. Norde MM, Collese TS, Giovannucci E, Rogero MM. A posteriori dietary patterns and their association with systemic low-grade inflammation in adults: a systematic review and meta-analysis. Nutr Rev. 2020. https://doi.org/10.1093/nutrit/nuaa010.

  48. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem. 2001;276:16683–9. https://doi.org/10.1074/jbc.M011695200.

    Article  CAS  PubMed  Google Scholar 

  49. Caricilli AM, Nascimento PH, Pauli JR, Tsukumo DML, Velloso LA, Carvalheira JB, et al. Inhibition of toll-like receptor 2 expression improves insulin sensitivity and signaling in muscle and white adipose tissue of mice fed a high-fat diet. J Endocrinol. 2008;199:399–406. https://doi.org/10.1677/JOE-08-0354.

    Article  CAS  PubMed  Google Scholar 

  50. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:S5–78. https://doi.org/10.1017/S0007114511005460.

    Article  CAS  PubMed  Google Scholar 

  51. Hwang DH, Kim J-A, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol. 2016;785:24–35. https://doi.org/10.1016/j.ejphar.2016.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98. https://doi.org/10.1016/j.cell.2010.07.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mantzaris MD, Tsianos EV, Galaris D. Interruption of triacylglycerol synthesis in the endoplasmic reticulum is the initiating event for saturated fatty acid-induced lipotoxicity in liver cells. FEBS J. 2011;278:519–30. https://doi.org/10.1111/j.1742-4658.2010.07972.x.

    Article  CAS  PubMed  Google Scholar 

  54. Leamy AK, Egnatchik RA, Shiota M, Ivanova PT, Myers DS, Brown HA, et al. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells. J Lipid Res. 2014;55:1478–88. https://doi.org/10.1194/jlr.M050237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Milenkovic D, Jude B, Morand C. miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med. 2013;64:40–51. https://doi.org/10.1016/j.freeradbiomed.2013.05.046.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou Y, Zhang T, Wang X, Wei X, Chen Y, Guo L, et al. Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cell Physiol Biochem. 2015;36:631–41. https://doi.org/10.1159/000430126.

    Article  CAS  PubMed  Google Scholar 

  57. Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI, Pedraza-Chaverrí J. Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm (Weinheim). 2014;347:873–84. https://doi.org/10.1002/ardp.201400266.

    Article  CAS  Google Scholar 

  58. Shehzad A, Rehman G, Lee YS. Curcumin in inflammatory diseases. BioFactors. 2013;39:69–77. https://doi.org/10.1002/biof.1066.

    Article  CAS  PubMed  Google Scholar 

  59. Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017;33:55–63. https://doi.org/10.1016/j.cytogfr.2016.10.001.

    Article  CAS  PubMed  Google Scholar 

  60. Epstein J, Sanderson IR, Macdonald TT. Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr. 2010;103:1545–57. https://doi.org/10.1017/S0007114509993667.

    Article  CAS  PubMed  Google Scholar 

  61. Yang H, Xu W, Zhou Z, Liu J, Li X, Chen L, et al. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp Clin Endocrinol Diabetes. 2015;123:360–7. https://doi.org/10.1055/s-0035-1545345.

    Article  CAS  PubMed  Google Scholar 

  62. Magyar K, Halmosi R, Palfi A, Feher G, Czopf L, Fulop A, et al. Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc. 2012;50:179–87. https://doi.org/10.3233/CH-2011-1424.

    Article  CAS  PubMed  Google Scholar 

  63. Poulsen MM, Fjeldborg K, Ornstrup MJ, Kjær TN, Nøhr MK, Pedersen SB. Resveratrol and inflammation: challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta. 1852;2015:1124–36. https://doi.org/10.1016/j.bbadis.2014.12.024.

    Article  CAS  Google Scholar 

  64. Pektas MB, Koca HB, Sadi G, Akar F. Dietary fructose activates insulin signaling and inflammation in adipose tissue: modulatory role of resveratrol. Biomed Res Int. 2016;2016:8014252–10. https://doi.org/10.1155/2016/8014252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14:612–22. https://doi.org/10.1016/j.cmet.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  66. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22. https://doi.org/10.1038/nature11868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu J, Liu X, Lai G, Yang X, Wang L, Zhao Y. Synergistical effect of 20-HETE and high salt on NKCC2 protein and blood pressure via ubiquitin-proteasome pathway. Hum Genet. 2013;132(2):179–87. https://doi.org/10.1007/s00439-012-1238-3.

    Article  CAS  PubMed  Google Scholar 

  68. Binger KJ, Gebhardt M, Heinig M, Rintisch C, Schroeder A, Neuhofer W, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015;125(11):4223–38. https://doi.org/10.1172/JCI80919.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Holub I, Gostner A, Theis S, Nosek L, Kudlich T, Melcher R, et al. Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (Palatinose). Br J Nutr. 2010;103:1730–7. https://doi.org/10.1017/S0007114509993874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016;4:525–36. https://doi.org/10.1016/S2213-8587(15)00482-9.

    Article  CAS  PubMed  Google Scholar 

  71. Holst JJ. On the physiology of GIP and GLP-1. Horm Metab Res. 2004;36:747–54. https://doi.org/10.1055/s-2004-826158.

    Article  CAS  PubMed  Google Scholar 

  72. Timper K, Grisouard J, Sauter NS, Herzog-Radimerski T, Dembinski K, Peterli R, et al. Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol Metab. 2013;304:E1–13. https://doi.org/10.1152/ajpendo.00100.2012.

    Article  CAS  Google Scholar 

  73. Chen S, Okahara F, Osaki N, Shimotoyodome A. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice. Am J Physiol Endocrinol Metab. 2015;308:E414–25. https://doi.org/10.1152/ajpendo.00418.2014.

    Article  CAS  PubMed  Google Scholar 

  74. Gögebakan Ö, Osterhoff MA, Schüler R, Pivovarova O, Kruse M, Seltmann A-C, et al. GIP increases adipose tissue expression and blood levels of MCP-1 in humans and links high energy diets to inflammation: a randomised trial. Diabetologia. 2015;58:1759–68. https://doi.org/10.1007/s00125-015-3618-4.

    Article  CAS  PubMed  Google Scholar 

  75. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. https://doi.org/10.1038/nature11450.

    Article  CAS  PubMed  Google Scholar 

  76. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45. https://doi.org/10.1016/j.cell.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  77. Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem. 2010;285:27601–8. https://doi.org/10.1074/jbc.M110.102947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165:1708–20. https://doi.org/10.1016/j.cell.2016.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017;35:8–15. https://doi.org/10.1016/j.mib.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  80. Wang B, Morinobu A, Horiuchi M, Liu J, Kumagai S. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell Immunol. 253:54–8. https://doi.org/10.1016/j.cellimm.2008.04.016.

  81. Millard AL, Mertes PM, Ittelet D, Villard F, Jeannesson P, Bernard J. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol. 2002;130:245–55. https://doi.org/10.1046/j.0009-9104.2002.01977.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J, et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1384–92. https://doi.org/10.1152/ajpgi.00540.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011;22:849–55. https://doi.org/10.1016/j.jnutbio.2010.07.009.

    Article  CAS  PubMed  Google Scholar 

  85. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015;8:80–93. https://doi.org/10.1038/mi.2014.44.

    Article  CAS  PubMed  Google Scholar 

  86. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73. https://doi.org/10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  87. Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626–36. https://doi.org/10.4049/jimmunol.1302062.

    Article  CAS  PubMed  Google Scholar 

  88. Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 2016;20(2):202–14. https://doi.org/10.1016/j.chom.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Speakman JR, Mitchell SE, Mazidi M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol. 2016;86:28–38. https://doi.org/10.1016/j.exger.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  90. Cioffi I, Evangelista A, Ponzo V, Ciccone G, Soldati L, Santarpia L, et al. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. J Transl Med. 2018;16:371. https://doi.org/10.1186/s12967-018-1748-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr. 2015;102:464–70. https://doi.org/10.3945/ajcn.115.109553.

    Article  CAS  PubMed  Google Scholar 

  92. Seimon RV, Roekenes JA, Zibellini J, Zhu B, Gibson AA, Hills AP, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol. 2015;418(Pt 2):153–72. https://doi.org/10.1016/j.mce.2015.09.014.

    Article  CAS  PubMed  Google Scholar 

  93. Pan H, Finkel T. Key proteins and pathways that regulate lifespan. J Biol Chem. 2017;292(16):6452–60. https://doi.org/10.1074/jbc.R116.771915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hwangbo D-S, Lee H-Y, Abozaid LS, Min K-J. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients. 2020;12. https://doi.org/10.3390/nu12041194.

  95. Rajpal A, Ismail-Beigi F. Intermittent fasting and ‘metabolic switch’: effects on metabolic syndrome, prediabetes and type 2 diabetes. Diabetes Obes Metab. 2020:dom.14080. https://doi.org/10.1111/dom.14080.

  96. Muñoz-Hernández L, Márquez-López Z, Mehta R, Aguilar-Salinas CA. Intermittent fasting as part of the management for T2DM: from animal models to human clinical studies. Curr Diab Rep. 2020;20:13. https://doi.org/10.1007/s11892-020-1295-2.

    Article  PubMed  Google Scholar 

  97. Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol. 2018;9. https://doi.org/10.3389/fphys.2018.00114.

  98. Chen X, Guo X, Ge Q, Zhao Y, Mu H, Zhang J. ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis. Oxidative Med Cell Longev. 2019;2019:3462530–18. https://doi.org/10.1155/2019/3462530.

    Article  CAS  Google Scholar 

  99. Mastronuzzi T, Grattagliano I. Nutrition as a health determinant in elderly patients. Curr Med Chem. 2019;26:3652–61. https://doi.org/10.2174/0929867324666170523125806.

    Article  CAS  PubMed  Google Scholar 

  100. Pivovarova O, Hornemann S, Weimer S, Lu Y, Murahovschi V, Zhuk S, et al. Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans. Peptides. 2015;65:12–9. https://doi.org/10.1016/j.peptides.2014.11.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Maria Lima Ribeiro.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition, Obesity, and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, S.M.L., Fernandez, S.S.M. & Rogero, M.M. Nutrition and Diabetes in the Context of Inflammaging. Curr Geri Rep 9, 251–260 (2020). https://doi.org/10.1007/s13670-020-00338-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-020-00338-2

Keywords

Navigation