Skip to main content

Advertisement

Log in

Integrating Frailty and Cognitive Phenotypes: Why, How, Now What?

  • Frailty in the Elderly (TP NG, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review elucidates the concept of frailty in relationship to reserve and resilience, the relationships and shared pathophysiology between physical frailty and cognitive impairment, the theoretical underpinnings of three integrated phenotypes of physical and cognitive impairments, and the potential of incorporating biomarkers into phenotype refinement and validation.

Recent Findings

The fact that frailty and cognitive impairment are associated and often coexist in older adults has led to the popular view of expanding the definition of frailty to include cognitive impairment. However, there is great variability in approaches to and assumptions regarding the integrated phenotypes of physical frailty and cognitive impairment.

Summary

The development of integrated frailty and cognitive phenotypes should explicate the types of frailty and cognitive impairment they intend to capture and prioritize the incorporation of biological theories that help determine shared and distinct pathways in the progression to physical and cognitive impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr Med. 2011;27(1):1–15. https://doi.org/10.1016/j.cger.2010.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Todd S, Barr S, Roberts M, Passmore AP. Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatr. 2013;28(11):1109–24. https://doi.org/10.1002/gps.3946.

    Article  Google Scholar 

  3. Bandeen-Roche K, Seplaki CL, Huang J, Buta B, Kalyani RR, Varadhan R, et al. Frailty in older adults: a nationally representative profile in the United States. J Gerontol A Biol Sci Med Sci. 2015;70(11):1427–34. https://doi.org/10.1093/gerona/glv133 Provides most up-to-date US population representative estimates of frailty prevalence by demographic characteristics.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Katz MJ, Lipton RB, Hall CB, Zimmerman ME, Sanders AE, Verghese J, et al. Age-specific and sex-specific prevalence and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in blacks and whites a report from the Einstein aging study. Alz Dis Assoc Dis. 2012;26(4):335–43.

    Article  Google Scholar 

  5. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 2007;29(1–2):125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Subra J, Gillette-Guyonnet S, Cesari M, Oustric S, Vellas B, Platform T. The integration of frailty into clinical practice: preliminary results from the Gerontopole. J Nutr Health Aging. 2012;16(8):714–20. https://doi.org/10.1007/s12603-012-0391-7.

    Article  CAS  PubMed  Google Scholar 

  7. Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment--a review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12(4s):840–51. https://doi.org/10.1016/j.arr.2013.06.004.

    Article  PubMed  Google Scholar 

  8. Gobbens RJJ, Luijkx KG, Wijnen-Sponselee MT, Schols JMGA. Towards an integral conceptual model of frailty. J Nutr Health Aging. 2010;14(3):175–81.

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Manas L, Feart C, Mann G, Vina J, Chatterji S, Chodzko-Zajko W, et al. Searching for an operational definition of frailty: a Delphi method based consensus statement. The frailty operative definition-consensus conference project. J Gerontol A Biol Sci Med Sci. 2013;68(1):62–7.

    Article  PubMed  Google Scholar 

  10. Sternberg SA, Wershof Schwartz A, Karunananthan S, Bergman H, Mark Clarfield A. The identification of frailty: a systematic literature review. J Am Geriatr Soc. 2011;59(11):2129–38. https://doi.org/10.1111/j.1532-5415.2011.03597.x.

    Article  PubMed  Google Scholar 

  11. Avila-Funes JA, Amieva H, Barberger-Gateau P, Le Goff M, Raoux N, Ritchie K, et al. Cognitive impairment improves the predictive validity of the phenotype of frailty for adverse health outcomes: the three-city study. J Am Geriatr Soc. 2009;57(3):453–61. https://doi.org/10.1111/j.1532-5415.2008.02136.x.

    Article  PubMed  Google Scholar 

  12. Rockwood K, Howlett SE, MacKnight C, Beattie BL, Bergman H, Hebert R, et al. Prevalence, attributes, and outcomes of fitness and frailty in community-dwelling older adults: report from the Canadian study of health and aging. J Gerontol A Biol Sci Med Sci. 2004;59(12):1310–7.

    Article  PubMed  Google Scholar 

  13. Sourial N, Wolfson C, Bergman H, Zhu B, Karunananthan S, Quail J, et al. A correspondence analysis revealed frailty deficits aggregate and are multidimensional. J Clin Epidemiol. 2010;63(6):647–54. https://doi.org/10.1016/j.jclinepi.2009.08.007.

    Article  PubMed  Google Scholar 

  14. Bilotta C, Bergamaschini L, Nicolini P, Case A, Pina G, Rossi SV, et al. Frailty syndrome diagnosed according to the study of osteoporotic fractures criteria and mortality in older outpatients suffering from Alzheimer’s disease: a one-year prospective cohort study. Aging Ment Health. 2012;16(3):273–80.

    Article  PubMed  Google Scholar 

  15. Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci. 2007;62(7):722–7.

    Article  PubMed  Google Scholar 

  16. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. Sci World. 2001;1:323–36.

    Article  CAS  Google Scholar 

  17. Verghese J, Wang CL, Lipton RB, Holtzer R. Motoric cognitive risk syndrome and the risk of dementia. J Gerontol A Biol Sci Med Sci. 2013;68(4):412–8.

    Article  PubMed  Google Scholar 

  18. Kelaiditi E, Cesari M, Canevelli M, van Kan GA, Ousset PJ, Gillette-Guyonnet S, et al. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging. 2013;17(9):726–34. https://doi.org/10.1007/s12603-013-0367-2.

    Article  CAS  PubMed  Google Scholar 

  19. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–M56

  20. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59(3):255–63.

    Article  PubMed  Google Scholar 

  21. Xue QL, Bandeen-Roche K, Varadhan R, Zhou J, Fried LP. Initial manifestations of frailty criteria and the development of frailty phenotype in the Women’s Health and Aging Study II. J Gerontol A Biol Sci Med Sci. 2008;63(9):984–90.

    Article  PubMed  Google Scholar 

  22. Cullati S, Kliegel M, Widmer E. Development of reserves over the life course and onset of vulnerability in later life. Nat Hum Behav. 2018;2(8):551–8. https://doi.org/10.1038/s41562-018-0395-3 Provides a theoretical framework for the development and onset of vulnerability in later life based on the concept of reserves.

    Article  PubMed  Google Scholar 

  23. Mosby’s medical dictionary. 9th ed. St. Louis, MO: Mosby Elsevier; 2013.

  24. Sniecinski RM, Skubas NJ, London MJ. Testing cardiac reserve: then and now. 1923 Anesth Analg. 2012;115(5):991–2. https://doi.org/10.1213/ANE.0b013e31825d2c09.

    Article  PubMed  Google Scholar 

  25. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–31.

    Article  CAS  PubMed  Google Scholar 

  26. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–8. https://doi.org/10.1001/jama.2010.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schrack JA, Simonsick EM, Ferrucci L. The energetic pathway to mobility loss: an emerging new framework for longitudinal studies on aging. J Am Geriatr Soc. 2010;58(Suppl 2):S329–36. https://doi.org/10.1111/j.1532-5415.2010.02913.x.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Whitson HE, Duan-Porter W, Schmader KE, Morey MC, Cohen HJ. Colon-Emeric CS. Physical resilience in older adults: systematic review and development of an emerging construct. J Gerontol A Biol Sci Med Sci. 2016;71(4):489–95. https://doi.org/10.1093/gerona/glv202 Characterizes the emerging construct of resilience as it pertains to physical health in older adults.

    Article  PubMed  Google Scholar 

  29. Luthar SS, Cicchetti D, Becker B. The construct of resilience: a critical evaluation and guidelines for future work. Child Dev. 2000;71(3):543–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Resnick B, Galik E, Dorsey S, Scheve A, Gutkin S. Reliability and validity testing of the physical resilience measure. Gerontologist. 2011;51(5):643–52. https://doi.org/10.1093/geront/gnr016.

    Article  PubMed  Google Scholar 

  31. Pershin BB, Kuz’Min SN, Suzdal’Nitskii RS, Levando VA. Reserve potential of immunity. Sports Med Train Rehabil. 1988;1(1):53–60. https://doi.org/10.1080/15438628809511845.

    Article  Google Scholar 

  32. Stern Y. Cognitive reserve. Neuropsychologia. 2009;47(10):2015–28.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leng SX, Yang H, Walston JD. Decreased cell proliferation and altered cytokine production in frail older adults. Aging Clin Exp Res. 2004;16(3):249–52.

    Article  CAS  PubMed  Google Scholar 

  34. Semba RD, Margolick JB, Leng S, Walston J, Ricks MO, Fried LP. T cell subsets and mortality in older community-dwelling women. Expl Gerontol. 2005;40(1–2):81–7. https://doi.org/10.1016/j.exger.2004.09.006.

    Article  CAS  Google Scholar 

  35. Yao X, Hamilton RG, Weng NP, Xue QL, Bream JH, Li H, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015–21. https://doi.org/10.1016/j.vaccine.2011.04.077.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kalyani RR, Varadhan R, Weiss CO, Fried LP, Cappola AR. Frailty status and altered glucose-insulin dynamics. J Gerontol A Biol Sci Med Sci. 2012;67(12):1300–6.

    Article  CAS  PubMed  Google Scholar 

  37. Wu C, Kim DH, Xue QL, Lee DSH, Varadhan R, Odden MC. Association of frailty with recovery from disability among community-dwelling older adults: results from two large U.S. cohorts. J Gerontol A Biol Sci Med Sci. 2018;74:575–81. https://doi.org/10.1093/gerona/gly080.

    Article  PubMed Central  Google Scholar 

  38. Boyd CM, Ricks M, Fried LP, Guralnik JM, Xue QL, Xia J, et al. Functional decline and recovery of activities of daily living in hospitalized, disabled older women: the Women’s Health and Aging Study I. J Am Geriatr Soc. 2009;57(10):1757–66. https://doi.org/10.1111/j.1532-5415.2009.02455.x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Furtado GE, Caldo A, Rieping T, Filaire E, Hogervorst E, Teixeira AMB, et al. Physical frailty and cognitive status over-60 age populations: a systematic review with meta-analysis. Arch Gerontol Geriatr. 2018;78:240–8.

    Article  PubMed  Google Scholar 

  40. Sleight C, Holtzer R. Differential associations of functional and cognitive health outcomes with pre-frailty and frailty states in community-dwelling older adults. J Health Psychol. 2017:1359105317745964. https://doi.org/10.1177/1359105317745964.

  41. Robertson DA, Savva GM, Coen RF, Kenny RA. Cognitive function in the prefrailty and frailty syndrome. J Am Geriatr Soc. 2014;62(11):2118–24. https://doi.org/10.1111/jgs.13111.

    Article  PubMed  Google Scholar 

  42. Chen S, Honda T, Narazaki K, Chen T, Nofuji Y, Kumagai S. Global cognitive performance and frailty in non-demented community-dwelling older adults: findings from the Sasaguri Genkimon Study. Geriatr Gerontol Int. 2016;16(6):729–36. https://doi.org/10.1111/ggi.12546.

    Article  PubMed  Google Scholar 

  43. Feng L, Nyunt MS, Gao Q, Feng L, Lee TS, Tsoi T, et al. Physical frailty, cognitive impairment, and the risk of neurocognitive disorder in the Singapore Longitudinal Ageing Studies. J Gerontol A Biol Sci Med Sci. 2017;72(3):369–75. https://doi.org/10.1093/gerona/glw050.

    Article  PubMed  Google Scholar 

  44. Rosado-Artalejo C, Carnicero JA, Losa-Reyna J, Guadalupe-Grau A, Castillo-Gallego C, Gutierrez-Avila G, et al. Cognitive performance across 3 frailty phenotypes: Toledo Study for Healthy Aging. J Am Med Dir Assoc. 2017;18(9):785–90. https://doi.org/10.1016/j.jamda.2017.04.008.

    Article  PubMed  Google Scholar 

  45. Nishiguchi S, Yamada M, Fukutani N, Adachi D, Tashiro Y, Hotta T, et al. Differential association of frailty with cognitive decline and sarcopenia in community-dwelling older adults. J Am Med Dir Assoc. 2015;16(2):120–4. https://doi.org/10.1016/j.jamda.2014.07.010.

    Article  PubMed  Google Scholar 

  46. Tay L, Lim WS, Chan M, Ye RJ, Chong MS. The independent role of inflammation in physical frailty among older adults with mild cognitive impairment and mild-to-moderate Alzheimer’s disease. J Nutr Health Aging. 2016;20(3):288–99. https://doi.org/10.1007/s12603-015-0617-6.

    Article  CAS  PubMed  Google Scholar 

  47. Yu R, Morley JE, Kwok T, Leung J, Cheung O, Woo J. The effects of combinations of cognitive impairment and pre-frailty on adverse outcomes from a prospective community-based cohort study of older Chinese people. Front Med (Lausanne). 2018;5:50. https://doi.org/10.3389/fmed.2018.00050.

    Article  Google Scholar 

  48. Chen S, Honda T, Narazaki K, Chen T, Kishimoto H, Haeuchi Y, et al. Physical frailty is associated with longitudinal decline in global cognitive function in non-demented older adults: a prospective study. J Nutr Health Aging. 2018;22(1):82–8. https://doi.org/10.1007/s12603-017-0924-1.

    Article  CAS  PubMed  Google Scholar 

  49. Wu YH, Liu LK, Chen WT, Lee WJ, Peng LN, Wang PN, et al. Cognitive function in individuals with physical frailty but without dementia or cognitive complaints: results from the I-Lan Longitudinal Aging Study. J Am Med Dir Assoc. 2015;16(10):899 e9–16. https://doi.org/10.1016/j.jamda.2015.07.013.

    Article  Google Scholar 

  50. Gross AL, Xue QL, Bandeen-Roche K, Fried LP, Varadhan R, McAdams-DeMarco MA, et al. Declines and impairment in executive function predict onset of physical frailty. J Gerontol A Biol Sci Med Sci. 2016;71(12):1624–30. https://doi.org/10.1093/gerona/glw067.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bunce D, Batterham PJ, Mackinnon AJ. Long-term associations between physical frailty and performance in specific cognitive domains. J Gerontol B Psychol Sci Soc Sci. 2018. https://doi.org/10.1093/geronb/gbx177.

  52. Fried LP, Hadley EC, Walston J, Newman AB, Guralnik JM, Studenski S, et al. From bedside to bench: research agenda for frailty. Sci Aging Knowl Environ. 2005;2005(31):24.

    Article  Google Scholar 

  53. Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, Kopinski PK, et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A. 2015;112(48):E6614–E23. https://doi.org/10.1073/pnas.1515733112 Provides experimental data supporting the associations between mitochondrial dysfunctions and impaired multisystem stress-response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science (New York, NY). 2011;333(6046):1109–12. https://doi.org/10.1126/science.1201940.

    Article  CAS  Google Scholar 

  55. Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: focus on mitochondria. Front Neuroendocrinol. 2018;49:72–85. https://doi.org/10.1016/j.yfrne.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Di Leo R, Musumeci O, de Gregorio C, Recupero A, Grimaldi P, Messina C, et al. Evidence of cardiovascular autonomic impairment in mitochondrial disorders. J Neurol. 2007;254(11):1498–503. https://doi.org/10.1007/s00415-007-0536-5.

    Article  PubMed  Google Scholar 

  57. Parikh S, Gupta A. Autonomic dysfunction in epilepsy and mitochondrial diseases. Semin Pediatr Neurol. 2013;20(1):31–4. https://doi.org/10.1016/j.spen.2013.01.003.

    Article  PubMed  Google Scholar 

  58. Walston JD. Connecting age-related biological decline to frailty and late-life vulnerability. Nestle Nutr Inst Workshop Ser. 2015;83:1–10. https://doi.org/10.1159/000382052 Provides an overview of biological underpinnings of frailty, with the focus on physiological stress-response systems.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Critchley HD, Eccles J, Garfinkel SN. Interaction between cognition, emotion, and the autonomic nervous system. Handb Clin Neurol. 2013;117:59–77. https://doi.org/10.1016/B978-0-444-53491-0.00006-7.

    Article  PubMed  Google Scholar 

  60. Sartori AC, Vance DE, Slater LZ, Crowe M. The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research. J Neurosci Nurs. 2012;44(4):206–17. https://doi.org/10.1097/JNN.0b013e3182527690.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ferrari E, Magri F. Role of neuroendocrine pathways in cognitive decline during aging. Ageing Res Rev. 2008;7(3):225–33. https://doi.org/10.1016/j.arr.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  62. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  63. Halil M, Kizilarslanoglu MC, Kuyumcu ME, Yesil Y, Jentoft AJC. Cognitive aspects of frailty: mechanisms behind the link between frailty and cognitive impairment. J Nutr Health Aging. 2015;19(3):276–83.

    Article  CAS  PubMed  Google Scholar 

  64. Rockwood K, Mitnitski A. Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clin Geriatr Med. 2011;27(1):17–26. https://doi.org/10.1016/j.cger.2010.08.008.

    Article  PubMed  Google Scholar 

  65. Rockwood K, Mitnitski A, Song X, Steen B, Skoog I. Long-term risks of death and institutionalization of elderly people in relation to deficit accumulation at age 70. J Am Geriatr Soc. 2006;54(6):975–9. https://doi.org/10.1111/j.1532-5415.2006.00738.x.

    Article  PubMed  Google Scholar 

  66. Imaoka Y, Kawano T, Hashiguchi A, Fujimoto K, Yamamoto K, Nishi T, et al. Modified frailty index predicts postoperative outcomes of spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg. 2018;175:137–43. https://doi.org/10.1016/j.clineuro.2018.11.004.

    Article  PubMed  Google Scholar 

  67. Allali G, Ayers EI, Verghese J. Motoric cognitive risk syndrome subtypes and cognitive profiles. J Gerontol A Biol Sci Med Sci. 2016;71(3):378–84.

    Article  PubMed  Google Scholar 

  68. Verghese J, Annweiler C, Ayers E, Barzilai N, Beauchet O, Bennett DA, et al. Motoric cognitive risk syndrome multicountry prevalence and dementia risk. Neurology. 2014;83(8):718–26.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Callisaya ML, Ayers E, Barzilai N, Ferrucci L, Guralnik JM, Lipton RB, et al. Motoric cognitive risk syndrome and falls risk: a multi-center study. J Alzheimers Dis. 2016;53(3):1043–52.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Parihar R, Mahoney JR, Verghese J. Relationship of gait and cognition in the elderly. Curr Transl Geriatr Exp Gerontol Rep. 2013;2(3):167–73. https://doi.org/10.1007/s13670-013-0052-7.

    Article  Google Scholar 

  71. Buracchio T, Dodge HH, Howieson D, Wasserman D, Kaye J. The trajectory of gait speed preceding mild cognitive impairment. Arch Neurol. 2010;67(8):980–6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Doi T, Shimada H, Makizako H, Tsutsumimoto K, Verghese J, Suzuki T. Motoric cognitive risk syndrome: association with incident dementia and disability. J Alzheimers Dis. 2017;59(1):77–84.

    Article  PubMed  Google Scholar 

  73. Ayers E, Verghese J. Motoric cognitive risk syndrome and risk of mortality in older adults. Alzheimers Dement. 2016;12(5):556–64.

    Article  PubMed  Google Scholar 

  74. Verghese J, LeValley A, Hall CB, Katz MJ, Ambrose AF, Lipton RB. Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc. 2006;54(2):255–61. https://doi.org/10.1111/j.1532-5415.2005.00580.x.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4(11):705–11. https://doi.org/10.1016/S1474-4422(05)70198-8.

    Article  PubMed  Google Scholar 

  76. Montero-Odasso MM, Barnes B, Speechley M, Muir-Hunter S, Doherty T, Duque G, et al. Physical frailty, cognitive frailty, and the risk of dementia in the gait and brain study. J Am Geriatr Soc. 2016;64:S129-S.

    Article  Google Scholar 

  77. Solfrizzi V, Scafato E, Seripa D, Lozupone M, Imbimbo BP, D’Amato A, et al. Reversible cognitive frailty, dementia, and all-cause mortality. The Italian Longitudinal Study on Aging. J Am Med Dir Assoc. 2017;18(1):89.e1–8.

    Article  Google Scholar 

  78. Shimada H, Doi T, Lee S, Makizako H, Chen LK, Arai H. Cognitive frailty predicts incident dementia among community-dwelling older people. J Clin Med. 2018;7(9).

  79. Roppolo M, Mulasso A, Rabaglietti E. Cognitive frailty in Italian community-dwelling older adults: prevalence rate and its association with disability. J Nutr Health Aging. 2017;21(6):631–6.

    Article  CAS  PubMed  Google Scholar 

  80. Feng L, Nyunt MSZ, Gao Q, Feng L, Yap KB, Ng TP. Cognitive frailty and adverse health outcomes: findings from the Singapore Longitudinal Ageing Studies (SLAS). J Am Med Dir Assoc. 2017;18(3):252–8.

    Article  PubMed  Google Scholar 

  81. Brown RT, Covinsky KE. Frailty as an outcome in geriatrics research: not ready for prime time? Ann Internal Med. 2018;168(5):361–+.

    Article  Google Scholar 

  82. Buta BJ, Walston JD, Godino JG, Park M, Kalyani RR, Xue QL, et al. Frailty assessment instruments: systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res Rev. 2016;26:53–61. https://doi.org/10.1016/j.arr.2015.12.003 Illustrates the importance of selecting frailty instruments to match their intended contexts and purposes of use.

    Article  PubMed  Google Scholar 

  83. Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psychol Bull. 1955;52(4):281–302.

    Article  CAS  PubMed  Google Scholar 

  84. Fried LP, Walston J, Hazzard WR, Blass JP, Ettinger WH Jr, Halter JB, et al. Frailty and failre to thrive. In: Principles of geriatric medicine and gerontology. New York: McGraw Hill; 1998. p. 1387–402.

    Google Scholar 

  85. Varadhan R, Seplaki CL, Xue QL, Bandeen-Roche K, Fried LP. Stimulus-response paradigm for characterizing the loss of resilience in homeostatic regulation associated with frailty. Mech Ageing Dev. 2008;129(11):666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xue QL, Buta B, Varadhan R, Szanton SL, Chaves P, Walston JD, et al., editors. Frailty and geriatric syndromes. Aging, place and health: a global perspective. Burlington, MA: Jones & Bartlett Learning; 2017.

    Google Scholar 

  87. Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, et al. Frailty: an emerging research and clinical paradigm - issues and controversies. J Gerontol A Biol Sci Med Sci. 2007;62(7):731–7.

    Article  PubMed  Google Scholar 

  88. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392–7. https://doi.org/10.1016/j.jamda.2013.03.022.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Esiri MM, Matthews F, Brayne C, Ince PG, Matthews FE, Xuereb JH, et al. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357(9251):169–75.

    Article  Google Scholar 

  90. Dartigues JF, Amieva H. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging. 2014;18(1):95.

    Article  CAS  PubMed  Google Scholar 

  91. Chu N, Tian J, Gross AL, Bandeen-Roche K, Carlson MC, Xue Q. Hierarchical development of physical frailty and cognitive impairment: clues into etiological pathways. Innov Aging. 2018;2(suppl_1):23. https://doi.org/10.1093/geroni/igy023.083.

    Article  PubMed Central  Google Scholar 

  92. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6. https://doi.org/10.1097/COH.0b013e32833ed177.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16. https://doi.org/10.1016/S1474-4422(12)70291-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mielke MM, Xue QL, Zhou J, Chaves PH, Fried LP, Carlson MC. Baseline serum cholesterol is selectively associated with motor speed and not rates of cognitive decline: the Women’s Health and Aging Study II. J Gerontol A Biol Sci Med Sci. 2008;63(6):619–24.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mielke MM, Bandaru VV, Haughey NJ, Xia J, Fried LP, Yasar S, et al. Serum ceramides increase the risk of Alzheimer disease: the Women’s Health and Aging Study II. Neurology. 2012;79(7):633–41. https://doi.org/10.1212/WNL.0b013e318264e380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bernick C, Katz R, Smith NL, Rapp S, Bhadelia R, Carlson M, et al. Statins and cognitive function in the elderly: the Cardiovascular Health Study. Neurology. 2005;65(9):1388–94. https://doi.org/10.1212/01.wnl.0000182897.18229.ec.

    Article  CAS  PubMed  Google Scholar 

  97. Grady D, Yaffe K, Kristof M, Lin F, Richards C, Barrett-Connor E. Effect of postmenopausal hormone therapy on cognitive function: the Heart and Estrogen/progestin Replacement Study. Am J Med. 2002;113(7):543–8.

    Article  CAS  PubMed  Google Scholar 

  98. Holden KF, Lindquist K, Tylavsky FA, Rosano C, Harris TB, Yaffe K, et al. Serum leptin level and cognition in the elderly: findings from the Health ABC Study. Neurobiol Aging. 2009;30(9):1483–9. https://doi.org/10.1016/j.neurobiolaging.2007.11.024.

    Article  CAS  PubMed  Google Scholar 

  99. Metti AL, Yaffe K, Boudreau RM, Ganguli M, Lopez OL, Stone KL, et al. Change in inflammatory markers and cognitive status in the oldest-old women from the study of osteoporotic fractures. J Am Geriatr Soc. 2014;62(4):662–6. https://doi.org/10.1111/jgs.12739.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Akrivos J, Ravona-Springer R, Schmeidler J, LeRoith D, Heymann A, Preiss R, et al. Glycemic control, inflammation, and cognitive function in older patients with type 2 diabetes. Int J Geriatr Psychiatry. 2015;30(10):1093–100. https://doi.org/10.1002/gps.4267.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lai KSP, Liu CS, Rau A, Lanctot KL, Kohler CA, Pakosh M, et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry. 2017;88(10):876–82. https://doi.org/10.1136/jnnp-2017-316201.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Li Xue.

Ethics declarations

Conflict of Interest

Qian-Li Xue, Brian Buta, Lina Ma, Meiling Ge, and Michelle Carlson declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Frailty in the Elderly

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, QL., Buta, B., Ma, L. et al. Integrating Frailty and Cognitive Phenotypes: Why, How, Now What?. Curr Geri Rep 8, 97–106 (2019). https://doi.org/10.1007/s13670-019-0279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-019-0279-z

Keywords

Navigation