Skip to main content

Advertisement

Log in

The Role of Muscle Mass, Muscle Quality, and Body Composition in Risk for the Metabolic Syndrome and Functional Decline in Older Adults

  • Nutrition, Obesity, and Diabetes (DT Villareal, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Age-related body composition changes include both loss of muscle mass (sarcopenia) and increase in fat mass, which jointly contribute to a decline in metabolic functions. Muscle quality is positively related to functional capacity and a lower risk for the development of the metabolic syndrome in aging populations. Muscle quality and muscle strength have become more reliable measures of functional capacity and mobility disability than muscle mass quantity. Recent reports also suggest that excess fat mass in older adults may impair muscle quality and that combination of excess body fat and muscle loss, a condition termed sarcopenic obesity, has even greater consequences on the muscle architecture and function than age-related muscle loss alone. A current challenge for clinicians and researchers is to develop interventions that will help decrease fat mass levels and maintain good muscle quality and strength levels in high-risk older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Blondin DP, Labbe SM, Phoenix S, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol. 2015;593(3):701–14.

    Article  CAS  PubMed  Google Scholar 

  2. Jurca R, Lamonte MJ, Church TS, et al. Associations of muscle strength and fitness with metabolic syndrome in men. Med Sci Sports Exerc. 2004;36(8):1301–7.

    Article  PubMed  Google Scholar 

  3. Stephen WC, Janssen I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging. 2009;13(5):460–6.

    Article  CAS  PubMed  Google Scholar 

  4. Martel GF, Hurlbut DE, Lott ME, et al. Strength training normalizes resting blood pressure in 65- to 73-year-old men and women with high normal blood pressure. J Am Geriatr Soc. 1999;47(10):1215–21.

    Article  CAS  PubMed  Google Scholar 

  5. Aubertin-Leheudre M, Lord C, Goulet ED, et al. Effect of sarcopenia on cardiovascular disease risk factors in obese postmenopausal women. Obesity (Silver Spring). 2006;14(12):2277–83.

    Article  Google Scholar 

  6. Bouchard DR, Janssen I. Dynapenic-obesity and physical function in older adults. J Gerontol A Biol Sci Med Sci. 2010;65(1):71–7.

    Article  PubMed  Google Scholar 

  7. Karelis AD, Tousignant B, Nantel J, et al. Association of insulin sensitivity and muscle strength in overweight and obese sedentary postmenopausal women. Appl Physiol Nutr Metab. 2007;32(2):297–301.

    Article  CAS  PubMed  Google Scholar 

  8. Sayer AA, Dennison EM, Syddall HE, et al. Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg? Diabetes Care. 2005;28(10):2541–2.

    Article  PubMed  Google Scholar 

  9. Koster A, Ding J, Stenholm S, et al. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci. 2011;66(8):888–95.

    Article  PubMed  Google Scholar 

  10. McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 2014;3(1):9.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Newman AB, Haggerty CL, Goodpaster B, et al. Strength and muscle quality in a well-functioning cohort of older adults: the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2003;51(3):323–30.

    Article  PubMed  Google Scholar 

  12. Visser M, Goodpaster BH, Kritchevsky SB, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60(3):324–33.

    Article  PubMed  Google Scholar 

  13. Misic MM, Rosengren KS, Woods JA, et al. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults. Gerontology. 2007;53(5):260–6.

    Article  PubMed  Google Scholar 

  14. Atlantis E, Martin SA, Haren MT, et al. Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism. 2009;58(7):1013–22.

    Article  CAS  PubMed  Google Scholar 

  15. Barbat-Artigas S, Dupontgand S, Pion CH, et al. Identifying recreational physical activities associated with muscle quality in men and women aged 50 years and over. J Cachexia Sarcopenia Muscle. 2014;5(3):221–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Schrager MA, Metter EJ, Simonsick E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol. 2007;102(3):919–25.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Prado CM, Wells JC, Smith SR, et al. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012;31(5):583–601.

    Article  CAS  PubMed  Google Scholar 

  18. Primeau V, Coderre L, Karelis AD, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond). 2011;35(7):971–81.

    Article  CAS  Google Scholar 

  19. Karelis AD, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004;30(6):569–72.

    Article  CAS  PubMed  Google Scholar 

  20. Vieira DC, Tibana RA, Tajra V, et al. Decreased functional capacity and muscle strength in elderly women with metabolic syndrome. Clin Interv Aging. 2013;8:1377–86.

    PubMed Central  PubMed  Google Scholar 

  21. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437–48.

    Article  CAS  PubMed  Google Scholar 

  22. Blaum CS, Xue QL, Michelon E, et al. The association between obesity and the frailty syndrome in older women: the Women’s Health and Aging Studies. J Am Geriatr Soc. 2005;53(6):927–34.

    Article  PubMed  Google Scholar 

  23. Cesari M, Kritchevsky SB, Baumgartner RN, et al. Sarcopenia, obesity, and inflammation–results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am J Clin Nutr. 2005;82(2):428–34.

    CAS  PubMed  Google Scholar 

  24. Delmonico MJ, Harris TB, Visser M, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85. This article showed that muscle mass and muscle strength did not decline equally.

  25. Tuttle LJ, Sinacore DR, Mueller MJ. Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J Aging Res. 2012;2012:172957.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Barbat-Artigas S, Pion CH, Leduc-Gaudet JP, et al. Exploring the role of muscle mass, obesity, and age in the relationship between muscle quality and physical function. J Am Med Dir Assoc. 2014;15(4):303 e13–20. This article highlighted that muscle quality and physical function are related in elderly population, but this relation depends on age and BMI.

  27. Flegal KM, Carroll MD, Kit BK, et al. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.

    Article  PubMed  Google Scholar 

  28. Botoseneanu A, Ambrosius WT, Beavers DP, et al. Prevalence of metabolic syndrome and its association with physical capacity, disability, and self-rated health in lifestyle interventions and independence for elders study participants. J Am Geriatr Soc. 2015;63(2):222–32.

    Article  PubMed  Google Scholar 

  29. Physical activity guidelines for Americans. Okla Nurse 2008;53 (4):p. 25.

  30. Jensen GL, Roy MA, Buchanan AE, et al. Weight loss intervention for obese older women: improvements in performance and function. Obes Res. 2004;12(11):1814–20.

    Article  PubMed  Google Scholar 

  31. Villareal DT, Chode S, Parimi N, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364(13):1218–29. This article showed the importance of exercise or weight loss on physical function maintenance in elderly.

  32. Kim KH, Lee MS. Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10(6):322–37.

    Article  CAS  PubMed  Google Scholar 

  33. Smith L, Thomas EL, Bell JD, et al. The association between objectively measured sitting and standing with body composition: a pilot study using MRI. BMJ Open. 2014;4(6):e005476.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Larsen BA, Allison MA, Kang E, et al. Associations of physical activity and sedentary behavior with regional fat deposition. Med Sci Sports Exerc. 2014;46(3):520–8.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Manini TM, Clark BC, Nalls MA, et al. Reduced physical activity increases intermuscular adipose tissue in healthy young adults. Am J Clin Nutr. 2007;85(2):377–84.

    CAS  PubMed  Google Scholar 

  36. Ford ES, Kohl 3rd HW, Mokdad AH, et al. Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults. Obes Res. 2005;13(3):608–14.

    Article  PubMed  Google Scholar 

  37. Atkins JL, Whincup PH, Morris RW, et al. Low muscle mass in older men: the role of lifestyle, diet and cardiovascular risk factors. J Nutr Health Aging. 2014;18(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  38. Landi F, Onder G, Carpenter I, et al. Physical activity prevented functional decline among frail community-living elderly subjects in an international observational study. J Clin Epidemiol. 2007;60(5):518–24.

    Article  PubMed  Google Scholar 

  39. Vincent HK, Vincent KR, Lamb KM. Obesity and mobility disability in the older adult. Obes Rev. 2010;11(8):568–79.

    Article  CAS  PubMed  Google Scholar 

  40. Wilmot EG, Edwardson CL, Achana FA, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–905.

    Article  CAS  PubMed  Google Scholar 

  41. Seguin R, Buchner DM, Liu J, et al. Sedentary behavior and mortality in older women: the Women’s Health Initiative. Am J Prev Med. 2014;46(2):122–35.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Matthews CE, George SM, Moore SC, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Miller MS, Callahan DM, Toth MJ. Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol. 2014;5:369.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ford ES, Li C, Zhao G, et al. Sedentary behavior, physical activity, and concentrations of insulin among US adults. Metabolism. 2010;59(9):1268–75.

    Article  CAS  PubMed  Google Scholar 

  45. Baron AD, Brechtel G, Wallace P, et al. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988;255(6 Pt 1):E769–74.

    CAS  PubMed  Google Scholar 

  46. Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol. 2003;551(Pt 2):673–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Healy GN, Matthews CE, Dunstan DW, et al. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32(5):590–7.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol. 2013;61(6):599–610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Verdejo HE, del Campo A, Troncoso R, et al. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep. 2012;14(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  50. Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Marzetti E, Lees HA, Wohlgemuth SE, et al. Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. Biofactors. 2009;35(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  52. Singh R, Cuervo AM. Autophagy in the cellular energetic balance. Cell Metab. 2011;13(5):495–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Weber TA, Reichert AS. Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol. 2010;45(7–8):503–11.

    Article  CAS  PubMed  Google Scholar 

  54. Wohlgemuth SE, Calvani R, Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol. 2014;71:62–70.

    Article  CAS  PubMed  Google Scholar 

  55. Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010;11(6):467–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Koga H, Kaushik S, Cuervo AM. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010;24(8):3052–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Las G, Serada SB, Wikstrom JD, et al. Fatty acids suppress autophagic turnover in beta-cells. J Biol Chem. 2011;286(49):42534–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Cawthon PM, Fox KM, Gandra SR, et al. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J Am Geriatr Soc. 2009;57(8):1411–9.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985). 2001;90(6):2157–65.

    CAS  Google Scholar 

  60. Reed RL, Pearlmutter L, Yochum K, et al. The relationship between muscle mass and muscle strength in the elderly. J Am Geriatr Soc. 1991;39(6):555–61.

    Article  CAS  PubMed  Google Scholar 

  61. Cooper R, Hardy R, Bann D, et al. Body mass index from age 15 years onwards and muscle mass, strength, and quality in early old age: findings from the MRC National Survey of Health and Development. J Gerontol A Biol Sci Med Sci. 2014;69(10):1253–9.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Villareal DT, Banks M, Siener C, et al. Physical frailty and body composition in obese elderly men and women. Obes Res. 2004;12(6):913–20.

    Article  PubMed  Google Scholar 

  63. Vilaca KH, Carneiro JA, Ferriolli E, et al. Body composition, physical performance and muscle quality of active elderly women. Arch Gerontol Geriatr. 2014;59(1):44–8.

    Article  PubMed  Google Scholar 

  64. Segal NA, Zimmerman MB, Brubaker M, et al. Obesity and knee osteoarthritis are not associated with impaired quadriceps specific strength in adults. PM R. 2011;3(4):314–23.

  65. Peterson MD, Liu D, Gordish-Dressman H, et al. Adiposity attenuates muscle quality and the adaptive response to resistance exercise in non-obese, healthy adults. Int J Obes (Lond). 2011;35(8):1095–103.

    Article  CAS  Google Scholar 

  66. Kelley DE, Slasky BS, Janosky J. Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1991;54(3):509–15.

    CAS  PubMed  Google Scholar 

  67. Waters DL, Brooks WM, Qualls CR, et al. Skeletal muscle mitochondrial function and lean body mass in healthy exercising elderly. Mech Ageing Dev. 2003;124(3):301–9.

    Article  CAS  PubMed  Google Scholar 

  68. Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–59.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

    Article  PubMed  Google Scholar 

  70. Stenholm S, Harris TB, Rantanen T, et al. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11(6):693–700. This review summarized the adverse and potential effect of sarcopenia-obesity.

  71. Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.

    Article  PubMed  Google Scholar 

  72. Shephard RJ, Montelpare W, Plyley M, et al. Handgrip dynamometry, Cybex measurements and lean mass as markers of the ageing of muscle function. Br J Sports Med. 1991;25(4):204–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Santanasto, AJ, NW, Glynn, MA, Newman, et al. Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: a randomized clinical trial. J Obes. 2011. 2011.

  74. Kennis E, Verschueren S, Van Roie E, et al. Longitudinal impact of aging on muscle quality in middle-aged men. Age (Dordr). 2014;36(4):9689.

    Article  Google Scholar 

  75. Al Snih S, Markides KS, Ray L, et al. Handgrip strength and mortality in older Mexican Americans. J Am Geriatr Soc. 2002;50(7):1250–6.

    Article  PubMed  Google Scholar 

  76. Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diab Endocrinol. 2014;2(10):819–29.

    Article  Google Scholar 

  77. Polotsky HN, Polotsky AJ. Metabolic implications of menopause. Semin Reprod Med. 2010;28(5):426–34.

    Article  PubMed  Google Scholar 

  78. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat Report. 2009 (13):p. 1–7.

  79. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.

    Article  PubMed  Google Scholar 

  80. Janssen I, Baumgartner RN, Ross R, et al. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159(4):413–21.

    Article  PubMed  Google Scholar 

  81. Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48.

    Article  CAS  PubMed  Google Scholar 

  82. Dominguez LJ, Barbagallo M. The cardiometabolic syndrome and sarcopenic obesity in older persons. J Cardiometab Syndr. 2007;2(3):183–9.

    Article  PubMed  Google Scholar 

  83. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):e10805.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Messier V, Karelis AD, Lavoie ME, et al. Metabolic profile and quality of life in class I sarcopenic overweight and obese postmenopausal women: a MONET study. Appl Physiol Nutr Metab. 2009;34(1):18–24.

    Article  PubMed  Google Scholar 

  85. Lu CW, Yang KC, Chang HH, et al. Sarcopenic obesity is closely associated with metabolic syndrome. Obes Res Clin Pract. 2013;7(4):e301–7.

    Article  PubMed  Google Scholar 

  86. Castaneda C, Janssen I. Ethnic comparisons of sarcopenia and obesity in diabetes. Ethn Dis. 2005;15(4):664–70.

    PubMed  Google Scholar 

  87. Baumgartner RN, Wayne SJ, Waters DL, et al. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995–2004.

    Article  PubMed  Google Scholar 

  88. Goulet ED, Lord C, Chaput JP, et al. No difference in insulin sensitivity between healthy postmenopausal women with or without sarcopenia: a pilot study. Appl Physiol Nutr Metab. 2007;32(3):426–33.

    Article  CAS  PubMed  Google Scholar 

  89. Lebon J, Aubertin-Leheudre M, Bobeuf F, et al. Is a small muscle mass index really detrimental for insulin sensitivity in postmenopausal women of various body composition status? J Musculoskelet Neuronal Interact. 2012;12(3):116–26.

    CAS  PubMed  Google Scholar 

  90. Reed RL, Pearlmutter L, Yochum K, et al. The relationship between muscle mass and muscle strength in the elderly. J Am Geriatr Soc. 1991;39(6):555–61.

    Article  CAS  PubMed  Google Scholar 

  91. Barbat-Artigas S, Dupontgand S, Fex A, et al. Relationship between dynapenia and cardio-respiratory functions in healthy postmenopausal women: novel clinical criteria. Menopause. 2010;18(4):400–5.

    Article  Google Scholar 

  92. Rantanen T, Era P, Heikkinen E. Maximal isometric strength and mobility among 75-year-old men and women. Age Ageing. 1994;23(2):132–7.

    Article  CAS  PubMed  Google Scholar 

  93. Al Snih S, Markides KS, Ottenbacher KJ, et al. Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging Clin Exp Res. 2004;16(6):481–6.

    Article  PubMed  Google Scholar 

  94. Stenholm S, Alley D, Bandinelli S, et al. The effect of obesity combined with low muscle strength on decline in mobility in older persons: results from the InCHIANTI study. Int J Obes (Lond). 2009;33(6):635–44. This article showed the effect of dynapenia-obesity on mobility.

  95. Senechal M, Dionne IJ, Brochu M. Dynapenic abdominal obesity and metabolic risk factors in adults 50 years of age and older. J Aging Health. 2012;24(5):812–26.

    Article  PubMed  Google Scholar 

  96. Barbat-Artigas S, Plouffe S, Dupontgand S, et al. Is functional capacity related to the daily amount of steps in postmenopausal women? Menopause. 2012;19(5):541–8. This article showed that dynapenia when combined with obesity did not increase metabolic risks.

  97. Barbat-Artigas S, Filion ME, Plouffe S, et al. Muscle quality as a potential explanation of the metabolically healthy but obese and sarcopenic obese paradoxes. Metab Syndr Relat Disord. 2012;10(2):117–22. This article showed that the discrepancies between the effect of sarcopenia obesity on metabolic syndrome could be due to muscle quality.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Robert T. Mankowski, Stephen D. Anton, and Mylène Aubertin-Leheudre declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mylène Aubertin-Leheudre.

Additional information

This article is part of the Topical Collection on Nutrition, Obesity, and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mankowski, R.T., Anton, S.D. & Aubertin-Leheudre, M. The Role of Muscle Mass, Muscle Quality, and Body Composition in Risk for the Metabolic Syndrome and Functional Decline in Older Adults. Curr Geri Rep 4, 221–228 (2015). https://doi.org/10.1007/s13670-015-0132-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-015-0132-y

Keywords

Navigation