Skip to main content

Advertisement

Log in

Thyroid Disease, Pregnancy, and Selenium Supplementation

  • Environmental Exposures and Pregnancy Outcomes (D Cantonwine, Section Editor)
  • Published:
Current Obstetrics and Gynecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Thyroid autoimmune disease is very common in women during their fertile age. From 2 to 17% of pregnant women in the general population have thyroid antibodies. A correct thyroid function has an essential role for fetal development, and maternal complications could occur with impaired thyroid function. This study has the purpose of investigating the possible therapeutic use of selenium supplementation in pregnant women with thyroid autoimmune disease, with a focus on the maternal and fetal outcomes. A review of the literature on Pubmed has been conducted, in order to have a general picture of the current knowledge about pregnancy and autoimmune thyroid disease: outcomes and therapy.

Recent Findings

The present literature agrees on the several positive roles of selenium in women’s reproductive life. It reduces the oxidative stress on the placenta and facilitates fertility and embryo development; it may reduce the onset of preeclampsia, miscarriage, preterm birth, gestational diabetes, and fetal growth restriction. Also, selenium has a positive effect on the immune system. After delivery, supplementation of selenium could decrease the incidence of postpartum thyroiditis in women with autoimmune disease. At last, the correct fetal neurodevelopment requires adequate levels of selenium in the mother’s plasma.

Summary

Despite the positive effects of selenium during pregnancy, the evidences about the supplementation of selenium are controversial and current guidelines do not recommend its use in pregnancy. It appears mandatory to design further studies to correctly evaluate whether the selenium levels should be pharmacologically implemented during pregnancy in women with thyroid autoimmune disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anandappa S, Joshi M, Polanski L, Carroll PV. Thyroid disorders in subfertility and early pregnancy. Ther Adv in Endocrinol Metab. 2020;11:2042018820945855. https://doi.org/10.1177/2042018820945855.

    Article  CAS  Google Scholar 

  2. Springer D, Jiskra J, Limanova Z, Zima T, Potlukova E. Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci. 2017;54(2):102–16. https://doi.org/10.1080/10408363.2016.1269309.

    Article  CAS  PubMed  Google Scholar 

  3. American College of Obstetrics and Gynecology ACOG practice bulletin. Thyroid disease in pregnancy. Number 37, August 2002. Int J Gynaecol Obstet. 2002;79(2):171–180. https://doi.org/10.1016/s0020-7292(02)00327-2.

  4. Korevaar T, Medici M, Visser TJ, Peeters RP. Thyroid disease in pregnancy: new insights in diagnosis and clinical management. Nat Rev Endocrinol. 2017;13(10):610–22. https://doi.org/10.1038/nrendo.2017.93.

    Article  CAS  PubMed  Google Scholar 

  5. Dhillon-Smith RK, Coomarasamy A. TPO antibody positivity and adverse pregnancy outcomes. Best Pract Res Clin Endocrinol Metab. 2020;34(4): 101433. https://doi.org/10.1016/j.beem.2020.101433.

    Article  CAS  PubMed  Google Scholar 

  6. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, Grobman WA, Laurberg P, Lazarus JH, Mandel SJ, Peeters RP, Sullivan S. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 2017;27(3):315–89. https://doi.org/10.1089/thy.2016.0457.

    Article  PubMed  Google Scholar 

  7. Köhrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):392–401. https://doi.org/10.1097/MED.0000000000000190.

    Article  CAS  PubMed  Google Scholar 

  8. Schomburg L, Schweizer U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophysi Acta. 2009;11:1453–62. https://doi.org/10.1016/j.bbagen.2009.03.015.

    Article  CAS  Google Scholar 

  9. Delitala AP, Capobianco G, Cherchi PL, Dessole S, Delitala G. Thyroid function and thyroid disorders during pregnancy: a review and care pathway. Arch Gynecol Obstet. 2019;299(2):327–38. https://doi.org/10.1007/s00404-018-5018-8.

    Article  CAS  PubMed  Google Scholar 

  10. Negro R, Mestman JH. Thyroid disease in pregnancy. Best Pract Res Clin Endocrinol Metab. 2011;25(6):927–43. https://doi.org/10.1016/j.beem.2011.07.010.

    Article  CAS  PubMed  Google Scholar 

  11. Klein RZ, Haddow JE, Faix JD, Brown RS, Hermos RJ, Pulkkinen A, Mitchell ML. Prevalence of thyroid deficiency in pregnant women. Clin Endocrinol. 1991;35(1):41–6. https://doi.org/10.1111/j.1365-2265.1991.tb03494.x.

    Article  CAS  Google Scholar 

  12. Korevaar TI, Muetzel R, Medici M, Chaker L, Jaddoe VW, de Rijke YB, Steegers EA, Visser TJ, White T, Tiemeier H, Peeters RP. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4(1):35–43. https://doi.org/10.1016/S2213-8587(15)00327-7.

    Article  CAS  PubMed  Google Scholar 

  13. Ecker JL, Musci TJ. Treatment of thyroid disease in pregnancy. Obstet Gynecol Clin North Am. 1997;24(3):575–89. https://doi.org/10.1016/s0889-8545(05)70323-5.

    Article  CAS  PubMed  Google Scholar 

  14. Davis LE, Lucas MJ, Hankins GD, Roark ML, Cunningham FG. Thyrotoxicosis complicating pregnancy. Am J Obstet Gynecol. 1989;160(1):63–70. https://doi.org/10.1016/0002-9378(89)90088-4.

    Article  CAS  PubMed  Google Scholar 

  15. Laurberg P, Andersen SL. Antithyroid drug use in pregnancy and birth defects: why some studies find clear associations, and some studies report none. Thyroid. 2015;25(11):1185–90. https://doi.org/10.1089/thy.2015.0182.

    Article  CAS  PubMed  Google Scholar 

  16. Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, Nixon A, Pearce EN, Soldin OP, Sullivan S, Wiersinga W. American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartum. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid. 2011;21(10):1081–1125. https://doi.org/10.1089/thy.2011.0087.

  17. Ragusa F, Fallahi P, Elia G, Gonnella D, Paparo SR, Giusti C, Churilov LP, Ferrari SM, Antonelli A. Hashimotos’ thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33(6): 101367. https://doi.org/10.1016/j.beem.2019.101367.

    Article  PubMed  Google Scholar 

  18. De Leo S, Pearce EN. Autoimmune thyroid disease during pregnancy. Lancet Diabetes Endocrinol. 2018;6(7):575–86. https://doi.org/10.1016/S2213-8587(17)30402-3.

    Article  PubMed  Google Scholar 

  19. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003;348(26):2646–2655. https://doi.org/10.1056/NEJMra021194.

  20. Orgiazzi J. Thyroid autoimmunity. Presse Med. 2019;41(12P2):e611–e625. https://doi.org/10.1016/j.lpm.2012.10.002.

  21. Radetti G, Zavallone A, Gentili L, Beck-Peccoz P, Bona G. Foetal and neonatal thyroid disorders. Minerva Pediatr. 2002;54(5):383–400.

    CAS  PubMed  Google Scholar 

  22. Dussault JH, Letarte J, Guyda H, Laberge C. Lack of influence of thyroid antibodies on thyroid function in the newborn infant and on a mass screening program for congenital hypothyroidism. J Pediatr. 1980;96(3Pt1):385–389. https://doi.org/10.1016/s0022-3476(80)80677-9.

  23. Glinoer D, Riahi M, Grün JP, Kinthaert J. Risk of subclinical hypothyroidism in pregnant women with asymptomatic autoimmune thyroid disorders. J Clin Endocrinol Metabol. 1994;79(1):197–204. https://doi.org/10.1210/jcem.79.1.8027226.

    Article  CAS  Google Scholar 

  24. Sullivan SA. Hypothyroidism in pregnancy. Clin Obstet Gynecol. 2019;62(2):308–19. https://doi.org/10.1097/GRF.0000000000000432.

    Article  PubMed  Google Scholar 

  25. Lazzarin N, Moretti C, De Felice G, Vaquero E, Manfellotto D. Further evidence on the role of thyroid autoimmunity in women with recurrent miscarriage. Int J Endocrinol. 2012;717185. https://doi.org/10.1155/2012/717185.

  26. He X, Wang P, Wang Z, He X, Xu D, Wang B. Thyroid antibodies and risk of preterm delivery: a meta-analysis of prospective cohort studies. Eur J Endocrinol. 2012;167(4):455–64. https://doi.org/10.1530/EJE-12-0379.

    Article  CAS  PubMed  Google Scholar 

  27. Korevaar T, Derakhshan A, Taylor PN, Meima M, Chen L, Bliddal S, Carty DM, Meems M, Vaidya B, Shields B, Ghafoor F, Popova PV, Mosso L, Oken E, Suvanto E, Hisada A, Yoshinaga J, Brown SJ, Bassols J, et al. Consortium on Thyroid and Pregnancy—Study Group on Preterm Birth. Association of thyroid function test abnormalities and thyroid autoimmunity with preterm birth: a systematic review and meta-analysis. JAMA. 2019;322(7):632–641. https://doi.org/10.1001/jama.2019.10931.

  28. Haddow JE, McClain MR, Palomaki GE, Neveux LM, Lambert-Messerlian G, Canick JA, Malone FD, Porter TF, Nyberg DA, Bernstein PS, D'Alton ME. First and Second Trimester Risk of Aneuploidy (FaSTER) Research Consortium. Thyroperoxidase and thyroglobulin antibodies in early pregnancy and placental abruption. Obstet Gynecol. 2011;117(2Pt1):287–292. https://doi.org/10.1097/AOG.0b013e31820513d9.

  29. Li Y, Shan Z, Teng W, Yu X, Li Y, Fan C, Teng X, Guo R, Wang H, Li J, Chen Y, Wang W, Chawinga M, Zhang L, Yang L, Zhao Y, Hua T. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25–30 months. Clin endocrinol (Oxf). 2010;72(6):825–9. https://doi.org/10.1111/j.1365-2265.2009.03743.x.

    Article  CAS  Google Scholar 

  30. Stagnaro-Green A, Schwartz A, Gismondi R, Tinelli A, Mangieri T, Negro R. High rate of persistent hypothyroidism in a large-scale prospective study of postpartum thyroiditis in southern Italy. J Clin Endocrinol Metab. 2011;96(3):652–7. https://doi.org/10.1210/jc.2010-1980.

    Article  CAS  PubMed  Google Scholar 

  31. Duntas LH, Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756–75. https://doi.org/10.1007/s12020-014-0477-6.

    Article  CAS  PubMed  Google Scholar 

  32. Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL, Köhrle J, Schomburg L. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J. 2005;386(Pt2):221–6. https://doi.org/10.1042/BJ20041973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ventura M, Melo M, Carrilho F. Selenium and thyroid disease: from pathophysiology to treatment. Int J Endocrinol. 2017;1297658. https://doi.org/10.1155/2017/1297658.

  34. Schomburg L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol. 2011;8(3):160–71. https://doi.org/10.1038/nrendo.2011.174.

    Article  CAS  PubMed  Google Scholar 

  35. Zimmermann MB, Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12(10):867–78. https://doi.org/10.1089/105072502761016494.

    Article  CAS  PubMed  Google Scholar 

  36. Mamon MAC, Ramos GB. Maternal selenium-supplementation at various stages of periconception period: influence on murine blastocyst morphology and implantation status. J Anim Sci Technol. 2017;59:7. https://doi.org/10.1186/s40781-017-0132-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paszkowski T, Traub AI, Robinson SY, McMaster D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta. 1995;236(2):173–80. https://doi.org/10.1016/0009-8981(95)98130-9.

    Article  CAS  PubMed  Google Scholar 

  38. Khera A, Dong LF, Holland O, Vanderlelie J, Pasdar EA, Neuzil J, Perkins AV. Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta. 2015;36(8):863–9. https://doi.org/10.1016/j.placenta.2015.06.010.

    Article  CAS  PubMed  Google Scholar 

  39. Hofstee P, Bartho LA, McKeating DR, Radenkovic F, McEnroe G, Fisher JJ, Holland OJ, Vanderlelie JJ, Perkins AV, Cuffe J. Maternal selenium deficiency during pregnancy in mice increases thyroid hormone concentrations, alters placental function and reduces fetal growth. J Physiol. 2019;597(23):5597–617. https://doi.org/10.1113/JP278473.

    Article  CAS  PubMed  Google Scholar 

  40. Rayman MP. Food-chain selenium and human health: emphasis on intake. Br J Nutr. 2008;100(2):254–68. https://doi.org/10.1017/S0007114508939830.

    Article  CAS  PubMed  Google Scholar 

  41. Winterhager E, Gellhaus A. Transplacental nutrient transport mechanisms of intrauterine growth restriction in rodent models and humans. Front Physiol. 2017;8:951. https://doi.org/10.3389/fphys.2017.00951.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Duffield AJ, Thomson CD, Hill KE, Williams S. An estimation of selenium requirements for New Zealanders. Am J Clin Nutr. 1999;70(5):896–903. https://doi.org/10.1093/ajcn/70.5.896.

    Article  CAS  PubMed  Google Scholar 

  43. Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med. 2013;65:1557–64. https://doi.org/10.1016/j.freeradbiomed.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  44. Joint FAO. WHO Expert Consultation on Human Vitamin and Mineral Requirements. Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert consultation, Bangkok, Thailand. 1998.

  45. National Institute of Health. Strengthening Knowledge and Understanding of Dietary Supplements, https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/#h2.

  46. Richard K, Holland O, Landers K, Vanderlelie JJ, Hofstee P, Cuffe J, Perkins AV. Review: effects of maternal micronutrient supplementation on placental function. Placenta. 2017;54:38–44. https://doi.org/10.1016/j.placenta.2016.12.022.

    Article  CAS  PubMed  Google Scholar 

  47. Hubalewska-Dydejczyk A, Duntas L, Gilis-Januszewska A. Pregnancy, thyroid, and the potential use of selenium. Hormones (Athens). 2020;19(1):47–53. https://doi.org/10.1007/s42000-019-00144-2.

    Article  Google Scholar 

  48. Mantovani G, Isidori AM, Moretti C, Di Dato C, Greco E, Ciolli P, Bonomi M, Petrone L, Fumarola A, Campagna G, Vannucchi G, Di Sante S, Pozza C, Faggiano A, Lenzi A, Giannetta E. Selenium supplementation in the management of thyroid autoimmunity during pregnancy: results of the “SERENA study”, a randomized, double-blind, placebo-controlled trial. Endocrine. 2019;66(3):542–50. https://doi.org/10.1007/s12020-019-01958-1.

    Article  CAS  PubMed  Google Scholar 

  49. Ambroziak U, Hybsier S, Shahnazaryan U, Krasnodębska-Kiljańska M, Rijntjes E, Bartoszewicz Z, Bednarczuk T, Schomburg L. Severe selenium deficits in pregnant women irrespective of autoimmune thyroid disease in an area with marginal selenium intake. J Elem Med Biol. 2017;44:186–91. https://doi.org/10.1016/j.jtemb.2017.08.005.

    Article  CAS  Google Scholar 

  50. Negro R, Greco G, Mangieri T, Pezzarossa A, Dazzi D, Hassan H. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J Clin Endocrinol Metab. 2007; 92(4):1263–1268. https://doi.org/10.1210/jc.2006-1821.

  51. Mao J, Pop VJ, Bath SC, Vader HL, Redman CW, Rayman MP. Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. Eur J Nutr. 2016;55(1):55–61. https://doi.org/10.1007/s00394-014-0822-9.

    Article  CAS  PubMed  Google Scholar 

  52. LiVolsi VA. Postpartum thyroiditis. The pathology slowly unravels. Am J Clin Pathol. 1993;100(3):193–195. https://doi.org/10.1093/ajcp/100.3.193.

  53. Prummel MF, Wiersinga WM. Thyroid peroxidase autoantibodies in euthyroid subjects. Best Pract Res Clin Endocrinol Metab. 2005;19(1):1–15. https://doi.org/10.1016/j.beem.2004.11.003.

    Article  CAS  PubMed  Google Scholar 

  54. Ando T, Davies TF. Clinical Review 160: Postpartum autoimmune thyroid disease: the potential role of fetal microchimerism. J Clin Endocrinol Metab. 2003;88(7):2965–71. https://doi.org/10.1210/jc.2002-021903.

    Article  CAS  PubMed  Google Scholar 

  55. Keely EJ. Postpartum thyroiditis: an autoimmune thyroid disorder which predicts future thyroid health. Obstet Med. 2011;4(1):7–11. https://doi.org/10.1258/om.2010.100041.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nicholson WK, Robinson KA, Smallridge RC, Ladenson PW, Powe NR. Prevalence of postpartum thyroid dysfunction: a quantitative review. Thyroid. 2006;16(6):573–82. https://doi.org/10.1089/thy.2006.16.573.

    Article  PubMed  Google Scholar 

  57. Lazarus JH, Ammari F, Oretti R, Parkes AB, Richards CJ, Harris B. Clinical aspects of recurrent postpartum thyroiditis. Br J Gen Pract. 1997;47(418):305–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stagnaro-Green A. Approach to the patient with postpartum thyroiditis. J Clin Endocrinol Metab. 2012;97(2):334–42. https://doi.org/10.1210/jc.2011-2576.

    Article  CAS  PubMed  Google Scholar 

  59. Premawardhana LD, Parkes AB, Ammari F, John R, Darke C, Adams H, Lazarus JH. Postpartum thyroiditis and long-term thyroid status: prognostic influence of thyroid peroxidase antibodies and ultrasound echogenicity. J Clin Endocrinol Metab. 2000;85(1):71–5. https://doi.org/10.1210/jcem.85.1.6227.

    Article  CAS  PubMed  Google Scholar 

  60. Jin Y, Coad J, Weber JL, Thomson JS, Brough L. Selenium intake in iodine-deficient pregnant and breastfeeding women in New Zealand. Nutrients. 2019;11(1):69. https://doi.org/10.3390/nu11010069.

    Article  CAS  PubMed Central  Google Scholar 

  61. Petricca D, Nacamulli D, Mian C, Mantero F, Cavedon E, Girelli ME, Betterle C. Effects of selenium supplementation on the natural course of autoimmune thyroiditis: a short review. J Endocrinol Invest. 2012;35(4):419–24. https://doi.org/10.3275/8302.

    Article  CAS  PubMed  Google Scholar 

  62. Drasch G, der Mail S, Schlosser C, Roider G. Content of non-mercury-associated selenium in human tissues. Biol Trace Elem Res. 2000;77(3):219–30. https://doi.org/10.1385/bter:77:3:219.

    Article  CAS  PubMed  Google Scholar 

  63. Yang X, Yu X, Fu H, Li L, Ren T. Different levels of prenatal zinc and selenium had different effects on neonatal neurobehavioral development. Neurotoxicology. 2013;37:35–9. https://doi.org/10.1016/j.neuro.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  64. Močenić I, Kolić I, Nišević JR, Belančić A, Tratnik JS, Mazej D, Falnoga I, Vlašić-Cicvarić I, Štimac T, Špirić Z, Horvat M, Prpić I. Prenatal selenium status, neonatal cerebellum measures and child neurodevelopment at the age of 18 months. Environ Res. 2019;176: 108529. https://doi.org/10.1016/j.envres.2019.108529.

    Article  CAS  PubMed  Google Scholar 

  65. Skröder HM, Hamadani JD, Tofail F, Persson LÅ, Vahter ME, Kippler MJ. Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin Nutr. 2015;34(5):923–930. https://doi.org/10.1016/j.clnu.2014.09.020.

  66. Polanska K, Krol A, Sobala W, Gromadzinska J, Brodzka R, Calamandrei G, Chiarotti F, Wasowicz W, Hanke W. Selenium status during pregnancy and child psychomotor development-Polish Mother and Child Cohort study. Pediatr Res. 2016;79(6):863–9. https://doi.org/10.1038/pr.2016.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Varsi K, Bolann B, Torsvik I, Rosvold Eik TC, Høl PJ, Bjørke-Monsen AL. Impact of maternal selenium status on infant outcome during the first 6 months of life. Nutrients. 2017;9(5):486. https://doi.org/10.3390/nu9050486.

    Article  CAS  PubMed Central  Google Scholar 

  68. Levander OA. Upper limit of selenium in infant formulas. J Nutr. 1989;119(12 Suppl):1869–73. https://doi.org/10.1093/jn/119.12_Suppl.1869.

    Article  CAS  PubMed  Google Scholar 

  69. Dorea JG. Selenium and breast-feeding. Br J Nutr. 2002;88(5):443–61. https://doi.org/10.1079/BJN2002692.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Giovanna Savastano: acquisition, analysis, and interpretation of data; drafted the work: revised the work critically for important intellectual content. Valentina del Negro: acquisition, analysis, and interpretation of data; revised the work critically for important intellectual content. Damiana Pompeo: acquisition, analysis, and interpretation of data; drafted the work. Sara Sorrenti: acquisition, analysis, and interpretation of data drafted the work. Paola Galoppi: approved the version to be published. Roberto Brunelli: approved the version to be published. Maria Grazia Piccioni: made substantial contributions to the conception or design of the work; revised it critically for important intellectual content; approved the version to be published.

Corresponding author

Correspondence to Maria Grazia Piccioni.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Environmental Exposures and Pregnancy Outcomes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savastano, G., Del Negro, V., Pompeo, D. et al. Thyroid Disease, Pregnancy, and Selenium Supplementation. Curr Obstet Gynecol Rep 10, 115–123 (2021). https://doi.org/10.1007/s13669-021-00314-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13669-021-00314-3

Keywords

Navigation