Skip to main content
Log in

Grape Seed Components as Protectors of Inflammation, DNA Damage, and Cancer

Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Oxidative stress is related to the pathogenesis of several chronic diseases, including inflammatory processes. Free radicals excess increase not only oxidative stress but also genomic instability. Polyphenols are non-enzymatic antioxidants that act as a defense barrier against free radicals and non-radical oxidants. The purpose of this article was to review published articles relating dietary polyphenols contained in grape seed proanthocyanidin extracts with its potential for reversing DNA damage.

Recent Findings

Proanthocyanidin components exert pleiotropic actions having several biological, biochemical, and significant pharmacological effects and showed the ability to reduce cytotoxicity and genotoxicity.

Summary

Grape seed proanthocyanidin extracts showed the ability to reduce cytotoxicity and genotoxicity through the comet assay and the micronucleus technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: classical team with new players. J Food Biochem. 2020;44(3): e13145.

    Article  PubMed  Google Scholar 

  2. Biswas SK. Does the interdependence between oxidative stress the inflammation explain the antioxidant paradox? Oxid Med Cel Longev. 2016;2016:5698931.

    Google Scholar 

  3. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - an overview on their chemistry and influences on health status. Eur J Med Chem. 2021;1(209): 112891.

    Article  Google Scholar 

  4. Yang HY, Feng R, Liu J, Wang HY, Wang YD. Increased frequency of micronuclei in binucleated lymphocytes among occupationally pesticide-exposed populations: a meta-analysis. Asian Pac J Cancer Prev. 2014;15(16):6955–60.

    Article  PubMed  Google Scholar 

  5. Jiang H, Panda S, Gekara NO. Comet and micronucleus assays for analyzing DNA damage and genome integrity. Methods Enzymol. 2019;625:299–307.

    Article  CAS  PubMed  Google Scholar 

  6. Fenech M. Cytokinesis-block micronucleus assay evolves intoa “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res. 2006;600(1–2):58–66.

    Article  CAS  PubMed  Google Scholar 

  7. Chatterjee S, Dhar S, Sengupta B, Ghosh A, De M, Roy S, Raychowdhury R, Chakrabarti S. Citogenetic monitoring in human oral cancers and other oral pathology: the micronucleous test in exfoliated buccal cells. Toxicol Mech Methods. 2009;19(6–7):427–33.

    Article  CAS  PubMed  Google Scholar 

  8. Bolognesi C, Bonassi S, Knasmueller S, Fenech M, Bruzzone M, Lando C, Ceppi M. Clinical application of micronucleous test in exfoliated buccal cells: a systematic review and metanalysis. Mutat Res. 2015;766:20–31.

    Article  CAS  Google Scholar 

  9. Bresgen N, Karlhuber G, Krizbai I, Bauer H, Bauer HC, Eckl PM. Oxidative stress in cultured cerebral endothelial cells induces chromosomal aberrations, micronuclei and apoptosis. J Neurosci Res. 2003;72(3):327–33.

    Article  CAS  PubMed  Google Scholar 

  10. Maluf SW, Martínez-López W, da Silva J. DNA damage: health and longevity. Oxid Med Cell Longev. 2018;2018:9701647.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thomas P, Hecker J, Faunt J, Fenech M. Buccal micronucleus cytome biomarkers may be associated with Alzheimer’s disease. Mutagenesis. 2007;22(6):371–9.

    Article  CAS  PubMed  Google Scholar 

  12. Maluf SW, Marroni NP, Heuser VD, Prá D. DNA damage and oxidative stress in human disease. BioMed Res Int. 2013;2013: 696104.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Rauf A, Imran M, Abu-Izneid T, Iahtisham-Ul-Haq, Patel S, Pan X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA. Proanthocyanidins: a comprehensive review. Biomed Pharmacother. 2019;116:108999. This is a good source of information on proanthocyanidins.

  14. Sanchez-Alonso I, Jimenez-Scrig A, Sara-Calixto F, Borderias A. Antioxidant protection of white grape pomace on restructured fish products during frozen storage. Food Sci Technol Leb. 2008;41:42–50.

    Article  CAS  Google Scholar 

  15. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang CS, Ho CT, Zhang J, Wan X, Zhang K, Lim J. Antioxidants: differing meanings in food Science and health Science. J Agric Food Chem. 2018;66(12):3063–8.

    Article  CAS  PubMed  Google Scholar 

  17. Aysun C, Leylagui K, Ismail K, Siebel H. The effect of grape seed extract on radiation-induced oxidative stress in the rat liver. Turkey J Gastroenterol. 2008;19(2):92–8.

    Google Scholar 

  18. Nassiri-Asl M, Hosseinzadeh H. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive constituents: an update. Phytother Res. 2016;30(9):1392–403.

    Article  CAS  PubMed  Google Scholar 

  19. Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. J Food Sci Technol. 2020;57(4):1205–15.

    Article  CAS  PubMed  Google Scholar 

  20. Hassan HA, Abdel-Aziz AF. Evaluation of free radical-scavenging and antioxidant properties of black berry against fluoride toxicity in rats. Food Chem Toxicol. 2010;48(8–9):1999–2004.

    Article  CAS  PubMed  Google Scholar 

  21. Hassan HA, Alrawi MM. Grape seeds proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid induced oxidative stress and cellular alterations. Cytotechnology. 2013;65(4):567–76.

    Article  CAS  PubMed  Google Scholar 

  22. Llópiz N, Puiggròs F, Céspedes E, Arola L, Ardévol A, Bladé C, Salvadó MJ. Antigenotoxic effect of grape seed procyanidin extract in Fao cells submitted to oxidative stress. J Agric Food Chem. 2004;52(5):1083–7.

    Article  PubMed  Google Scholar 

  23. Kowalczyk MC, Walaszek Z, Kowalczyk P, Kinjo T, Hanausek M, Slaga TJ. Differential effects of several phytochemicals and their derivatives on murine keratinocytes in vitro and in vivo: implications for skin cancer prevention. Carcinogenesis. 2009;30(6):1008–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shrotriya S, Deep G, Gu M, Kaur M, Jain AK, Inturi S, Agarwal R, Agarwal C. Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells. Carcinogenesis. 2012;33(4):848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perde-Schrepler M, Chereches G, Brie I, Tatomir C, Postescu ID, Soran L, Filip A. Grape seed extract as photochemopreventive against UVB-induced skin cancer. J Photochem Photobiol B. 2013;118:16–21.

    Article  CAS  PubMed  Google Scholar 

  26. Szeto YT, Lee KY, Kalle W, Pak SC. Protective effect of grape seed extracts on human lymphocytes: a preliminary study. Appl Physiol Nutr Metab. 2013;38(3):275–9.

    Article  PubMed  Google Scholar 

  27. Niu L, SHAO M, Lui Y, HU J, Li R Xie H, Zhou L Shi L, Zhang L, Niu Y. Reduction of oxidative damages induced by titanium dioxide nanoparticles correlates with induction of the Nrf2 pathway by GSPE supplementation in mice. Chem Biol Interact. 2017;275:133–144.

  28. Bashir N, Shagirtha K, Manoharan V, Miltonprabu S. The molecular and biochemical inside view of grape seed proanthocyanidins in ameliorating cadmium-induced testes-toxicity in rat model: implication of PI3K/Akt/Nrf-2 signaling. Biosci Rep. 2019;39(1):BSR20180515.

  29. Eldaim Abd MA, Tousson E, El Sayed IET, Abd El-Aleim AEH, Elsharkawy HN. Grape seeds proanthocyanidins extract ameliorates Ehrlich solid tumor induced renal tissue and DNA damage in mice. Biomed Pharmacother. 2019;115:108908.

    Article  Google Scholar 

  30. Yalçin E, Oruç E, Çavusoglu K, Yapar K. Protective role of grape seed extract against doxorubicin-induced cardiotoxicity and genotoxicity in albino mice. J Med Food. 2010;13(4):917–25.

    Article  PubMed  Google Scholar 

  31. Targhi RG, Banaei A, Saba V. Radioprotective effect of grape seed extract against gamma irradiation in mouse bone marrow cells. J Cancer Res Ther. 2019;15(3):512–6.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas P, Wang YJ, Zhong JH, Kosaraju S, O’Callaghan NJ, Zhou XF, Fenech M. Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease. Mutat Res. 2009;661(1–2):25–34.

    Article  CAS  PubMed  Google Scholar 

  33. Abdel-Salam OME, Galal AF, Hassanane MM, Salem LM, Nada SA, Morsy FA. Grape seed extract alone or combined with atropine in treatment of malathion-induced neuro and genotoxicity. J Nanosci Nanotechnol. 2018;18:564–75.

    Article  CAS  PubMed  Google Scholar 

  34. Praphasawat R, Klungsupya P, Muangman T, Laovitthayanggoon S, Arunpairojana V, Himakoun L. Antimutagenicity and antioxidative DNA damage properties of oligomeric proanthocyanidins from Thai grape seeds in TK6 cells. Asian Pac J Cancer Prev. 2011;12(5):1317–21.

    PubMed  Google Scholar 

  35. Veríssimo G, Bast A, Weseler AR. Paraquat disrupts the anti-inflammatory action of cortisol in human macrophages in vitro: therapeutic implication for paraquat intoxications. Toxicol Res. 2017;6(2):232–41.

    Article  Google Scholar 

  36. Dulundu E, Ozel Y, Topaloglu U, Toklu H, Ercan F, Gedik N, Sener G. Grape seed extract reduces oxidative stress and fibrosis in experimental biliary obstruction. J Gastroenterol Hepatol. 2007;22(6):885–92.

    Article  PubMed  Google Scholar 

  37. Zhou K, Raffoul JJ. Potential anticancer properties of grape antioxidants. J Oncol. 2012;2012:803294.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in grape seeds- biochemistry and functionality. J Med Food. 2003;6(4):291–9.

    Article  CAS  PubMed  Google Scholar 

  39. • Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of oxidative stress and antioxidant defense. J Pharmac Biomed Analysis. 2022;209:114477. https://doi.org/10.1016/j.jpba.2021.114477. This is a very comprehensive review of oxidative stress and human disease.

  40. Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspective. Food Chem Toxicol. 2013;51:15–25.

    Article  CAS  PubMed  Google Scholar 

  41. Maluf S, Prá D, Friedrisch JR, Bittar C, da Silva MA, Henriques JA, Silla L. Length of treatment and dose as determinants of mutagenicity in sickle cell disease patients treated with hydroxyurea. Environ Toxicol Pharmacol. 2009;27(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hassan HA, Isa AM, El-Kholy WM, Nour SE. Testicular disorders induced by plant growth regulators: cellular protection with proanthocyanidins grape seeds extract. Cytotechnology. 2013;65(5):851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.

    Article  CAS  PubMed  Google Scholar 

  44. Hassan HA, Edrees GM, El-Gamel EM, El-Sayed EA. Amelioration of cisplatin-induced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage. Cytotechnology. 2014;66(3):419–29.

    Article  CAS  PubMed  Google Scholar 

  45. McGeer PL, McGeer EG. Local neuroinflammation and the progression of Alzheimer’s disease. J Neuro Virol. 2002;8(6):529–38.

    CAS  Google Scholar 

  46. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.

    Article  CAS  PubMed  Google Scholar 

  47. Strathearn KE, Yousef GG, Grace MH, Roy SL, Tambe MA, Ferruzzi MG, Wu QL, Simon JE, Lila MA, Rochet JC. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. Brain Res. 2014;1555:60–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hwang IK, Yoo KY, Kim DS, Jeong YK, Kim JD, Shin HK, Lim SS, Yoo ID, Kang TC, Kim DW, Moon WK, Won MH. Neuroprotective effects of grape seed extract on neuronal injury by inhibiting DNA damage in the gerbil hippocampus after transient forebrain ischemia. Life Sci. 2004;75(16):1989–2001.

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L, Humala N, Teplow DB, Pasinetti GM. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci. 2008;28(25):6388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Velmurugan B, Singh R, Tyagi A, Agarwal R. Inhibition of azoxymethane-induced colonic aberrant crypt foci formation by silibinin in male Fischer 344 rats. Cancer Prev Res. 2008;1(5):376–84.

    Article  CAS  Google Scholar 

  51. Kaur M, Agarwal C, Agarwal R. Anticancer and cancer chemopreventive potential of grape seed extract and other grape based products. J Nutr. 2009;139(9):1806S-S1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. •• Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK and Devi R. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol. 2022;13:806470. This talks about the protective effects of dietary polyphenols in a very enlightening way.

  53. Nichols JA, Katiyar SK. Skin protection by natural polyphenols: antiinflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302(2):71–83.

    Article  CAS  PubMed  Google Scholar 

  54. Fguyer S, Afaq F, Mukhtar H. Photochemoprevention of skin cancer by botanical agents. Photoderm Photoimmunol Photomed. 2003;19(2):56–72.

    Article  CAS  Google Scholar 

  55. Vaid M, Sharma SD, Katiyar SK. Proanthocyanidins inhibit photocarcinogenesis through enhancement of DNA repair and xeroderma pigmentosum group A dependent mechanism. Cancer Prev Res. 2010;3(12):1621–9.

    Article  CAS  Google Scholar 

  56. Valverde M, Rojas E. Environmental and occupational biomonitoring using the comet assay. Mutat Res. 2009;681(1):93–109.

    Article  CAS  PubMed  Google Scholar 

  57. Zepeda-Arce R, Rojas-García AE, Benitez-Trinidad A, Herrera-Moreno JF, Medina-Díaz IM, Barrón-Vivanco BS, Villegas GP, Hernández-Ochoa I, Sólis Heredia MJ, Bernal-Hernández YY. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ Toxicol. 2017;32(6):1754–64.

    Article  CAS  PubMed  Google Scholar 

  58. Szeto YT, Benzie IF. Effects of dietary antioxidants on human DNA ex vivo. Free Radical Res. 2002;36(1):113–8.

    Article  CAS  Google Scholar 

  59. Hughes-Formella B, Wunderlich O, Williams R. Anti-inflammatory and skin-hydrating properties of a dietary supplement and topical formulations containing oligomeric proanthocyanidins. Skin Pharmacol Physiol. 2007;20(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  60. Van Wijk EP, Van Wijk R, Bosman S. Using ultra-weak photon emission to determine the effect of oligomeric proanthocyanidins on oxidative stress of human skin. J Photochem Photobiol B. 2010;98(3):199–206.

    Article  PubMed  Google Scholar 

  61. Sarkar R, Bansal A, Ailawadi P. Future therapies in melasma: what lies ahead? Indian J Dermatol Venereol Leprol. 2020;86(1):8–17.

    Article  PubMed  Google Scholar 

  62. Moini H, Rimbach G, Packer L. Molecular aspects of procyanidin biological activity: disease preventative and therapeutic potentials. Drug Metabol Drug Interact. 2000;17(1–4):237–59.

    CAS  PubMed  Google Scholar 

  63. Yamakoshi J, Saito M, Kataoka S, Kikuchi M. Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food Chem Toxicol. 2002;40(5):599–607.

    Article  CAS  PubMed  Google Scholar 

  64. Xiao-Yu Z, Wen-Guang L, Yong-Jie W, Ming-Tang G. Amelioration on doxorubicin-induced myocardial oxidative stress and immunosuppression by grape seed proanthocyanidins in tumour-bearing mice. J Pharm Pharmacol. 2005;57(8):1043–52.

    Google Scholar 

  65. Ferreira AAL, Russell RM, Rocha N, Placido Ladeira MS, Favero Salvadori DM, Oliveira Nascimento MC, Matsui M, Carvalho FA, Tang G, Matsubara LS, Matsubara BB. Effect of lycopene on doxorubicin-induced cardiotoxicity: an echocardiographic, histological and morphometrical assessment. Basic Clin Pharmacol. 2007;101(1):16–24.

    Article  CAS  Google Scholar 

  66. Ariga T. The antioxidative function, preventive action on disease and utilization of proanthocyanidins. BioFactors. 2004;21(1–4):197–201.

    Article  CAS  PubMed  Google Scholar 

  67. Anjom-Shoae J, Milajerdi A, Larijani B, Esmaillzadeh A. Effects of grape seed extract on dyslipidaemia: a systematic review and dose-response meta-analysis of randomised cotrolled trials. Br J Nutr. 2020;6:1–14.

  68. Foshati S, Rouhani MH, Amani R. The effect of grape seed extract supplementation on oxidative stress and inflammation: a systematic review and meta-analysis of controlled trials. Int J Clin Pract. 2021;75(11):e14469.

  69. Odai T, Terauchi M, Kato K, Hirose A, Miyasaka N. Effects of grape seed proanthocyanidin extract on vascular endothelial function in participants with prehypertension: a randomized, double-blind, placebo controlled study. Nutrients. 2019;11(12):2844.

  70. Zhang H, Liu S, Li L, Liu S, Liu S, Mi J, Tian G. The impact of grape seed extract treatment on blood pressure changes: a meta-analysis of 16 randomized controlled trials. Medicine (Baltimore). 2016;95(33):e4247.

Download references

Funding

Our research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [grant numbers 438195/2019–01; 438163/2019–01], and “Fundação de Apoio a Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC)” (Brazil).

Author information

Authors and Affiliations

Authors

Contributions

MM performed the database search, designed the figures, and wrote the manuscript draft. MEVC organized the data and assembled the tables. GV is an expert on the compounds described in this article — she has reviewed the biochemical discussions in this regard. SWM designed and coordinated the research and wrote the manuscript final version.

Corresponding author

Correspondence to Sharbel Weidner Maluf.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest that could be perceived as prejudicial to the impartiality of the reported research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancini, M., Cerny, M.E.V., Cardoso, N.S. et al. Grape Seed Components as Protectors of Inflammation, DNA Damage, and Cancer. Curr Nutr Rep 12, 141–150 (2023). https://doi.org/10.1007/s13668-023-00460-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00460-5

Keywords

Navigation