Abstract
Purpose of Review
With the prolongation of life expectancy, the gap between lifespan and “health span,” the disease-free lifespan, has been widening due to the massive burden of age-related chronic diseases and research on healthy aging has been gaining momentum. A growing body of evidence suggests that diet is a strong determinant of healthy aging and consumption of sugar-sweetened beverages (SSB), a major source of added sugars, predicts poor health outcomes in the aging population, including cardiovascular disease, diabetes, and cancer. Evidence further supports a link between sugar-sweetened beverages-triggered pathological processes and biologic factors of aging, including inflammaging, oxidative stress, and alterations in intestinal microbiota. At present, substitution of sugar-sweetened beverages with healthier alternative beverage remains the most robust strategy to limit the deleterious effects of sugar-sweetened beverages on health worldwide and may help achieve healthy longevity. The purpose of this review is to provide an overview of mechanisms by which sugar-sweetened beverages consumption may impact the physiological aging process and how a simple intervention of beverage replacement may promote healthy aging.
Recent Findings
Recent findings indicate that SSB are associated with accelerated aging phenotype and activate various adverse biological processes such as chronic inflammation, oxidative stress, insulin resistance, and gut dysbiosis.
Summary
Replacing SSB with healthier beverages may be a reasonable option to reduce the burden of chronic disease in the aging population and even prolong life and healthspan.
Similar content being viewed by others
Data and Materials Availability
Not applicable
Code Availability
Not applicable
References
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Prevention CfDCa. FastStats - Life Expectancy. 2021.
Prince MJ, Wu F, Guo Y, Gutierrez Robledo LM, O’Donnell M, Sullivan R, Yusuf S. The burden of disease in older people and implications for health policy and practice. Lancet. 2015;385:549–62. https://doi.org/10.1016/s0140-6736(14)61347-7.
• Marsman D, Belsky DW, Gregori D, Johnson MA, Low Dog T, Meydani S, Pigat S, Sadana R, Shao A, Griffiths JC. Healthy ageing: the natural consequences of good nutrition-a conference report. Eur J Nutr. 2018;57:15–34. https://doi.org/10.1007/s00394-018-1723-0. Of importance.
• Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561:45–56. https://doi.org/10.1038/s41586-018-0457-8. Of importance.
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20:12–12. https://doi.org/10.1007/s11906-018-0812-z.
Esposito K, Maiorino MI, Bellastella G, Chiodini P, Panagiotakos D, Giugliano D. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. 2015;5: e008222. https://doi.org/10.1136/bmjopen-2015-008222.
Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128:229–38. https://doi.org/10.1016/j.amjmed.2014.10.014.
Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies. Cancer Med. 2015;4:1933–47. https://doi.org/10.1002/cam4.539.
• Solfrizzi V, Custodero C, Lozupone M, Imbimbo BP, Valiani V, Agosti P, Schilardi A, D’Introno A, La Montagna M, Calvani M, Guerra V, Sardone R, Abbrescia DI, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G, Sabbá C, Panza F. Relationships of dietary patterns, foods, and micro- and macronutrients with Alzheimer’s disease and late-life cognitive disorders: a systematic review. J Alzheimers Dis. 2017;59:815–49. https://doi.org/10.3233/jad-170248. Of importance.
Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17:2769–82. https://doi.org/10.1017/s1368980013003169.
Schwingshackl L, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2015;115:780-800.e5. https://doi.org/10.1016/j.jand.2014.12.009.
Herrick KA TA, Afful J (2018) Beverage consumption among youth in the United States, 2013–2016. NCHS Data Brief, no 320. Hyattsville, MD: National Center for Health Statistics.
of USDoAaUSD and Services. HaH Dietary Guidelines for Americans. Dec. 2020; 2020–2025.
Rosinger A HK, Gahche J, Park S. Sugar-sweetened beverage consumptionamong U.S. adults, 2011–2014.NCHS data brief, no 270. Hyattsville, MD: National.Center for Health Statistics. 2017.
Sikalidis AK, Kelleher AH, Maykish A, Kristo AS. Non-alcoholic beverages, old and novel, and their potential effects on human health, with a focus on hydration and cardiometabolic health. Medicina (Kaunas). 2020;56:490. https://doi.org/10.3390/medicina56100490.
Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Clin Pract. 2016;70:791–805. https://doi.org/10.1111/ijcp.12841.
Malik VS, Hu FB. Sugar-sweetened beverages and cardiometabolic health: an update of the evidence. Nutrients. 2019;11:1840. https://doi.org/10.3390/nu11081840.
Yerlikaya A, Dagel T, King C, Kuwabara M, Lanaspa MA, Andres-Hernando A, Covic A, Manitius J, Sag AA, Kanbay M. Dietary and commercialized fructose: Sweet or sour? Int Urol Nephrol. 2017;49:1611–20. https://doi.org/10.1007/s11255-017-1544-8.
Yuzbashian E, Asghari G, Mirmiran P, Zadeh-Vakili A, Azizi F. Sugar-sweetened beverage consumption and risk of incident chronic kidney disease: Tehran lipid and glucose study. Nephrology (Carlton). 2016;21:608–16. https://doi.org/10.1111/nep.12646.
Hu D, Cheng L, Jiang W. Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J Affect Disord. 2019;245:348–55. https://doi.org/10.1016/j.jad.2018.11.015.
• Malik VS, Li Y, Pan A, Koning LD, Schernhammer E, Willett WC, Hu FB. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. 2019;139:2113–2125. https://doi.org/10.1161/CIRCULATIONAHA.118.037401. Of importance.
Kanbay M, Goldsmith D, Akcay A, Covic A. Phosphate - the silent stealthy cardiorenal culprit in all stages of chronic kidney disease: a systematic review. Blood Purif. 2009;27:220–30. https://doi.org/10.1159/000197562.
Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A. Role of Klotho in the development of essential hypertension. Hypertension. 2021;77:740–50. https://doi.org/10.1161/HYPERTENSIONAHA.120.16635.
Taskinen M-R, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome Nutrients. 2019;11:1987. https://doi.org/10.3390/nu11091987.
Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, Ishimoto T, Li N, Marek G, Duranay M, Schreiner G, Rodriguez-Iturbe B, Nakagawa T, Kang DH, Sautin YY, Johnson RJ. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287:40732–44. https://doi.org/10.1074/jbc.M112.399899.
Koliaki C, Roden M. Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. Mol Cell Endocrinol. 2013;379:35–42. https://doi.org/10.1016/j.mce.2013.06.002.
Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7:251–64. https://doi.org/10.1038/nrgastro.2010.41.
Mai BH, Yan L-J. The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes, metabolic syndrome and obesity : targets and therapy. 2019;12:821–6. https://doi.org/10.2147/DMSO.S198968.
Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90:23–46. https://doi.org/10.1152/physrev.00019.2009.
Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128:545–55. https://doi.org/10.1172/jci96702.
Farag MM, Ashour EH, El-Hadidy WF. Amelioration of High Fructose Diet-Induced Insulin Resistance, Hyperuricemia, and Liver Oxidative Stress by Combined Use of Selective Agonists of PPAR-α and PPAR-γ in Rats. Dubai Medical Journal. 2020;3:76–86. https://doi.org/10.1159/000506899.
Stanhope KL, Medici V, Bremer AA, Lee V, Lam HD, Nunez MV, Chen GX, Keim NL, Havel PJ. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr. 2015;101:1144–54. https://doi.org/10.3945/ajcn.114.100461.
Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr. 2006;84:274–88. https://doi.org/10.1093/ajcn/84.1.274.
Ma J, Fox CS, Jacques PF, Speliotes EK, Hoffmann U, Smith CE, Saltzman E, McKeown NM. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J Hepatol. 2015;63:462–9. https://doi.org/10.1016/j.jhep.2015.03.032.
Taskinen MR, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome Nutrients. 2019;11. https://doi.org/10.3390/nu11091987.
Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem. 2017;118:3577–85. https://doi.org/10.1002/jcb.26097.
Bernardes N, Ayyappan P, De Angelis K, Bagchi A, Akolkar G, da Silva DD, Belló-Klein A, Singal PK. Excessive consumption of fructose causes cardiometabolic dysfunctions through oxidative stress and inflammation. Can J Physiol Pharmacol. 2017;95:1078–90. https://doi.org/10.1139/cjpp-2016-0663.
• Burger KS. Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: a randomized controlled trial. Am J Clin Nutr. 2017;105:555–63. https://doi.org/10.3945/ajcn.116.140145. Of importance.
An R. Beverage Consumption in Relation to Discretionary Food Intake and Diet Quality among US Adults, 2003 to 2012. J Acad Nutr Diet. 2016;116:28–37. https://doi.org/10.1016/j.jand.2015.08.009.
•• Struijk EA, Rodríguez-Artalejo F, Fung TT, Willett WC, Hu FB, Lopez-Garcia E. Sweetened beverages and risk of frailty among older women in the Nurses’ Health Study: A cohort study. PLoS Med. 2020;17: e1003453. https://doi.org/10.1371/journal.pmed.1003453. Of major importance.
• Yin J, Zhu Y, Malik V, Li X, Peng X, Zhang FF, Shan Z, Liu L. Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages and Risk of Cardiovascular Disease: A Meta-Analysis and Systematic Review. Adv Nutr. 2021;12:89–101. https://doi.org/10.1093/advances/nmaa084. Of importance.
Drouin-Chartier J-P, Zheng Y, Li Y, Malik V, Pan A, Bhupathiraju SN, Tobias DK, Manson JE, Willett WC, Hu FB. Changes in Consumption of Sugary Beverages and Artificially Sweetened Beverages and Subsequent Risk of Type 2 Diabetes: Results From Three Large Prospective U.S. Cohorts of Women and Men. 2019;42:2181–9. https://doi.org/10.2337/dc19-0734%JDiabetesCare.
Mansouri M, Sharifi F, Yaghubi H, Varmaghani M, Tabrizi YM, Nasiri M, Sadeghi O. Sugar-sweetened beverages consumption in relation to hypertension among Iranian university students: the MEPHASOUS study. Eat Weight Disord. 2020;25:973–82. https://doi.org/10.1007/s40519-019-00713-9.
Ahn H, Park YK. Sugar-sweetened beverage consumption and bone health: a systematic review and meta-analysis. Nutr J. 2021;20:41. https://doi.org/10.1186/s12937-021-00698-1.
Cetiner O, Yildirim G, Kalyoncu ZB. Social Jetlag Is Associated with the Frequency of Consumption of Sugar-Sweetened Beverages and a High BMI Percentile in Adolescents: Results of the Cross-Sectional Family Life, Activity, Sun, Health, and Eating (FLASHE) Study. J Acad Nutr Diet. 2021. https://doi.org/10.1016/j.jand.2021.01.017.
Yang Q, Xi Y, Liu H, Luo J, Ouyang Y, Sun M, Yong C, Xiang C, Lin Q. Free Sugars Intake among Chinese Adolescents and Its Association with Dental Caries: A Cross-Sectional Study Nutrients. 2021;13. https://doi.org/10.3390/nu13030765
Zhang S, Gu Y, Bian S, Lu Z, Zhang Q, Liu L, Meng G, Yao Z, Wu H, Wang Y, Zhang T, Wang X, Sun S, Wang X, Zhou M, Jia Q, Song K, Qi L, Niu K. Soft drink consumption and risk of nonalcoholic fatty liver disease: results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study. Am J Clin Nutr. 2021;113:1265–74. https://doi.org/10.1093/ajcn/nqaa380.
• Lin WT, Kao YH, Sothern MS, Seal DW, Lee CH, Lin HY, Chen T, Tseng TS. The association between sugar-sweetened beverages intake, body mass index, and inflammation in US adults. Int J Public Health. 2020;65:45–53. https://doi.org/10.1007/s00038-020-01330-5. Of importance.
• Anderson JJ, Gray SR, Welsh P, Mackay DF, Celis-Morales CA, Lyall DM, Forbes J, Sattar N, Gill JMR, Pell JP. The associations of sugar-sweetened, artificially sweetened and naturally sweet juices with all-cause mortality in 198,285 UK Biobank participants: a prospective cohort study. BMC Med. 2020;18:97. https://doi.org/10.1186/s12916-020-01554-5. Of importance.
•• Laclaustra M, Rodriguez-Artalejo F, Guallar-Castillon P, Banegas JR, Graciani A, Garcia-Esquinas E, Ordovas J, Lopez-Garcia E. Prospective association between added sugars and frailty in older adults. Am J Clin Nutr. 2018;107:772–9. https://doi.org/10.1093/ajcn/nqy028. Of major importance.
Barzilay JI, Blaum C, Moore T, Xue QL, Hirsch CH, Walston JD, Fried LP. Insulin resistance and inflammation as precursors of frailty: the Cardiovascular Health Study. Arch Intern Med. 2007;167:635–41. https://doi.org/10.1001/archinte.167.7.635.
•• Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17–35. https://doi.org/10.1016/j.smim.2018.09.003. Of major importance.
•• Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22. https://doi.org/10.1038/s41569-018-0064-2. Of major importance.
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14:133–44. https://doi.org/10.1038/nrcardio.2016.185.
Salimi S, Shardell MD, Seliger SL, Bandinelli S, Guralnik JM, Ferrucci L. Inflammation and Trajectory of Renal Function in Community-Dwelling Older Adults. J Am Geriatr Soc. 2018;66:804–11. https://doi.org/10.1111/jgs.15268.
Leonardi GC, Accardi G, Monastero R, Nicoletti F, Libra M. Ageing: from inflammation to cancer. Immunity & ageing : I & A. 2018;15:1–1. https://doi.org/10.1186/s12979-017-0112-5.
Gorelick PB. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann N Y Acad Sci. 2010;1207:155–62. https://doi.org/10.1111/j.1749-6632.2010.05726.x.
Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc. 1999;47:639–46. https://doi.org/10.1111/j.1532-5415.1999.tb01583.x.
• Soysal P, Stubbs B, Lucato P, Luchini C, Solmi M, Peluso R, Sergi G, Isik AT, Manzato E, Maggi S, Maggio M, Prina AM, Cosco TD, Wu YT, Veronese N. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res Rev. 2016;31:1–8. https://doi.org/10.1016/j.arr.2016.08.006. Of importance.
Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88. https://doi.org/10.1038/nm.2279.
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808. https://doi.org/10.1172/jci19246.
Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, Sicard A, Rome S, Benis A, Zucker JD, Vidal H, Laville M, Barsh GS, Basdevant A, Stich V, Cancello R, Langin D. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. Faseb j. 2004;18:1657–69. https://doi.org/10.1096/fj.04-2204com.
Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Robertson C, Sharma P, Fraser C, MacLennan G. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ. 2017;359: j4849. https://doi.org/10.1136/bmj.j4849.
Aeberli I, Gerber PA, Hochuli M, Kohler S, Haile SR, Gouni-Berthold I, Berthold HK, Spinas GA, Berneis K. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr. 2011;94:479-85. https://doi.org/10.3945/ajcn.111.013540.
Hert KA, Fisk PS, Rhee YS, Brunt AR. Decreased consumption of sugar-sweetened beverages improved selected biomarkers of chronic disease risk among US adults: 1999 to 2010. Nutr Res. 2014;34:58–65. https://doi.org/10.1016/j.nutres.2013.10.005.
Schulze MB, Hoffmann K, Manson JE, Willett WC, Meigs JB, Weikert C, Heidemann C, Colditz GA, Hu FB. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr. 2005;82:675–84. https://doi.org/10.1093/ajcn/82.3.675%JTheAmericanJournalofClinicalNutrition.
Tamez M, Monge A, López-Ridaura R, Fagherazzi G, Rinaldi S, Ortiz-Panozo E, Yunes E, Romieu I, Lajous M. Soda Intake Is Directly Associated with Serum C-Reactive Protein Concentration in Mexican Women. J Nutr. 2018;148:117–24. https://doi.org/10.1093/jn/nxx021.
Yu Z, Ley SH, Sun Q, Hu FB, Malik VS. Cross-sectional association between sugar-sweetened beverage intake and cardiometabolic biomarkers in US women. Br J Nutr. 2018;119:570–80. https://doi.org/10.1017/S0007114517003841.
Luger M, Lafontan M, Bes-Rastrollo M, Winzer E, Yumuk V, Farpour-Lambert N. Sugar-Sweetened Beverages and Weight Gain in Children and Adults: A Systematic Review from 2013 to 2015 and a Comparison with Previous Studies. Obes Facts. 2017;10:674–93. https://doi.org/10.1159/000484566.
Malik VS, Hu FB. Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence Nutrients. 2019;11. https://doi.org/10.3390/nu11081840
Ruanpeng D, Thongprayoon C, Cheungpasitporn W, Harindhanavudhi T. Sugar and artificially sweetened beverages linked to obesity: a systematic review and meta-analysis. QJM. 2017;110:513–20. https://doi.org/10.1093/qjmed/hcx068.
DiNicolantonio JJ, Mehta V, Onkaramurthy N, O’Keefe JH. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog Cardiovasc Dis. 2018;61:3–9. https://doi.org/10.1016/j.pcad.2017.12.001.
• Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84. https://doi.org/10.1038/nature11319. Of importance.
Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M. Gut Microbiota and Extreme Longevity. Curr Biol. 2016;26:1480–5. https://doi.org/10.1016/j.cub.2016.04.016.
Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. https://doi.org/10.1186/1471-2180-9-123.
Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W. Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS ONE. 2010;5: e10667. https://doi.org/10.1371/journal.pone.0010667.
•• Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and healthy aging. 2016;4:3–16. https://doi.org/10.3233/NHA-150002. Of major importance.
Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, Sanchez-Nino MD, Ruiz-Ortega M, Sanz AB, Ortiz A. The Contribution of Histone Crotonylation to Tissue Health and Disease: Focus on Kidney Health. Front Pharmacol. 2020;11:393. https://doi.org/10.3389/fphar.2020.00393.
Do MH, Lee E, Oh MJ, Kim Y, Park HY. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change Nutrients. 2018;10. https://doi.org/10.3390/nu10060761
Bergheim I, Weber S, Vos M, Krämer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol. 2008;48:983–92. https://doi.org/10.1016/j.jhep.2008.01.035.
Kavanagh K, Wylie AT, Tucker KL, Hamp TJ, Gharaibeh RZ, Fodor AA, Cullen JMC. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am J Clin Nutr. 2013;98:349–57. https://doi.org/10.3945/ajcn.112.057331.
Rivero-Gutiérrez B, Gámez-Belmonte R, Suárez MD, Lavín JL, Aransay AM, Olivares M, Martínez-Augustin O, Sánchez de Medina F, Zarzuelo A. A synbiotic composed of Lactobacillus fermentum CECT5716 and FOS prevents the development of fatty acid liver and glycemic alterations in rats fed a high fructose diet associated with changes in the microbiota Mol Nutr Food Res. 2017;61. https://doi.org/10.1002/mnfr.201600622
Okazaki Y, Sekita A, Chiji H, Kato N. Consumption of lily bulb modulates fecal ratios of firmicutes and bacteroidetes phyla in rats fed a high-fat diet. Food Science and Biotechnology. 2016;25:153–6. https://doi.org/10.1007/s10068-016-0112-9.
Payne AN, Chassard C, Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev. 2012;13:799–809. https://doi.org/10.1111/j.1467-789X.2012.01009.x.
Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev. 2004;125:811–26. https://doi.org/10.1016/j.mad.2004.07.009.
•• Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127. Of major importance.
Ghaffari RLaS, Stem Cells, Redox Signaling, and Stem Cell. Aging. 2014;20:1902–16. https://doi.org/10.1089/ars.2013.5300.
• Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://doi.org/10.2147/CIA.S158513. Of importance.
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radical Biol Med. 2015;88:314–36. https://doi.org/10.1016/j.freeradbiomed.2015.05.036.
Prasad K, Dhar I. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease. The International journal of angiology : official publication of the International College of Angiology, Inc. 2014;23:217–226. https://doi.org/10.1055/s-0034-1387169
Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohyd Res. 2011;346:933–8. https://doi.org/10.1016/j.carres.2011.03.005.
Girard A, Madani S, Boukortt F, Cherkaoui-Malki M, Belleville J, Prost J. Fructose-enriched diet modifies antioxidant status and lipid metabolism in spontaneously hypertensive rats. Nutrition. 2006;22:758–66. https://doi.org/10.1016/j.nut.2006.05.006.
Yan LJ. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med. 2018;1:7–13. https://doi.org/10.1002/ame2.12001.
Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29. https://doi.org/10.1016/j.redox.2013.12.016.
Kim C-S, Park S, Kim J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J Exerc Nutr Biochem. 2017;21:55–61. https://doi.org/10.20463/jenb.2017.0027.
Pifferi F, Terrien J, Marchal J, Dal-Pan A, Djelti F, Hardy I, Chahory S, Cordonnier N, Desquilbet L, Hurion M, Zahariev A, Chery I, Zizzari P, Perret M, Epelbaum J, Blanc S, Picq J-L, Dhenain M, Aujard F. Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Communications Biology. 2018;1:30. https://doi.org/10.1038/s42003-018-0024-8.
Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK, Batzer MA, Bustamante CD, Eichler EE, Hahn MW, Hardison RC, Makova KD, Miller W, Milosavljevic A, Palermo RE, Siepel A, Sikela JM, Attaway T, Bell S, Bernard KE, Buhay CJ, Chandrabose MN, Dao M, Davis C, Delehaunty KD, Ding Y, Dinh HH, Dugan-Rocha S, Fulton LA, Gabisi RA, Garner TT, Godfrey J, Hawes AC, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Kirkness EF, Cree A, Fowler RG, Lee S, Lewis LR, Li Z. Liu Y-s, Moore SM, Muzny D, Nazareth LV, Ngo DN, Okwuonu GO, Pai G, Parker D, Paul HA, Pfannkoch C, Pohl CS, Rogers Y-H, Ruiz SJ, Sabo A, Santibanez J, Schneider BW, Smith SM, Sodergren E, Svatek AF, Utterback TR, Vattathil S, Warren W, White CS, Chinwalla AT, Feng Y, Halpern AL, Hillier LW, Huang X, Minx P, Nelson JO, Pepin KH, Qin X, Sutton GG, Venter E, Walenz BP, Wallis JW, Worley KC, Yang S-P, Jones SM, Marra MA, Rocchi M, Schein JE, Baertsch R, Clarke L, Csürös M, Glasscock J, Harris RA, Havlak P, Jackson AR, Jiang H, Liu Y, Messina DN, Shen Y, Song HX-Z, Wylie T, Zhang L, Birney E, Han K, Konkel MK, Lee J, Smit AFA, Ullmer B, Wang H, Xing J, Burhans R, Cheng Z, Karro JE, Ma J, Raney B, She X, Cox MJ, Demuth JP, Dumas LJ, Han S-G, Hopkins J, Karimpour-Fard A, Kim YH, Pollack JR, Vinar T, Addo-Quaye C, Degenhardt J, Denby A, Hubisz MJ, Indap A, Kosiol C, Lahn BT, Lawson HA, Marklein A, Nielsen R, Vallender EJ, Clark AG, Ferguson B, Hernandez RD, Hirani K, Kehrer-Sawatzki H, Kolb J, Patil S, Pu L-L, Ren Y, Smith DG, Wheeler DA, Schenck I, Ball EV, Chen R, Cooper DN, Giardine B, Hsu F, Kent WJ, Lesk A, Nelson DL, O’Brien WE, Prüfer K, Stenson PD, Wallace JC, Ke H, Liu X-M, Wang P, Xiang AP, Yang F, Barber GP, Haussler D, Karolchik D, Kern AD, Kuhn RM, Smith KE and Zwieg AS. Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. 2007;316:222–34. https://doi.org/10.1126/science.1139247%JScience.
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys. 2009;325:201–4. https://doi.org/10.1126/science.1173635%JScience.
Bodkin NL, Alexander TM, Ortmeyer HK, Johnson E, Hansen BC. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. J Gerontol A Biol Sci Med Sci. 2003;58:212–9. https://doi.org/10.1093/gerona/58.3.b212.
Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489:318–21. https://doi.org/10.1038/nature11432.
Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063–14063. https://doi.org/10.1038/ncomms14063.
• Franceschi C, Ostan R, Santoro A. Nutrition and Inflammation: Are Centenarians Similar to Individuals on Calorie-Restricted Diets? Annu Rev Nutr. 2018;38:329–56. https://doi.org/10.1146/annurev-nutr-082117-051637. Of importance.
Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17:51–8. https://doi.org/10.1097/MCO.0000000000000019.
Willcox BJ, Willcox DC, Todoriki H, Fujiyoshi A, Yano K, He Q, Curb JD, Suzuki M. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://doi.org/10.1196/annals.1396.037.
Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006;295:1539–48. https://doi.org/10.1001/jama.295.13.1539.
Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: An update. Ageing Res Rev. 2017;39:36–45. https://doi.org/10.1016/j.arr.2016.08.005.
Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, Romashkan S, Williamson DA, Meydani SN, Villareal DT, Smith SR, Stein RI, Scott TM, Stewart TM, Saltzman E, Klein S, Bhapkar M, Martin CK, Gilhooly CH, Holloszy JO, Hadley EC, Roberts SB. A 2-Year Randomized Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of Health Span and Longevity. J Gerontol A Biol Sci Med Sci. 2015;70:1097–104. https://doi.org/10.1093/gerona/glv057.
Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011;14:275–87. https://doi.org/10.1089/ars.2010.3253.
Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, Willett WC, Hu FB. Determinants and Consequences of Obesity. Am J Public Health. 2016;106:1656–62. https://doi.org/10.2105/ajph.2016.303326.
van Dam RM, Li T, Spiegelman D, Franco OH, Hu FB. Combined impact of lifestyle factors on mortality: prospective cohort study in US women. BMJ. 2008;337: a1440. https://doi.org/10.1136/bmj.a1440.
Raben A, Vasilaras TH, Møller AC, Astrup A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr. 2002;76:721–9. https://doi.org/10.1093/ajcn/76.4.721.
Mattes RD. Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids. Physiol Behav. 1996;59:179–87. https://doi.org/10.1016/0031-9384(95)02007-1.
Kuzma JN, Cromer G, Hagman DK, Breymeyer KL, Roth CL, Foster-Schubert KE, Holte SE, Callahan HS, Weigle DS, Kratz M. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial. Am J Clin Nutr. 2015;102:1373–80. https://doi.org/10.3945/ajcn.115.116368.
Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2012;346: e7492. https://doi.org/10.1136/bmj.e7492.
Chen L, Appel LJ, Loria C, Lin P-H, Champagne CM, Elmer PJ, Ard JD, Mitchell D, Batch BC, Svetkey LP, Caballero B. Reduction in consumption of sugar-sweetened beverages is associated with weight loss: the PREMIER trial. Am J Clin Nutr. 2009;89:1299–306. https://doi.org/10.3945/ajcn.2008.27240.
Tate DF, Turner-McGrievy G, Lyons E, Stevens J, Erickson K, Polzien K, Diamond M, Wang X, Popkin B. Replacing caloric beverages with water or diet beverages for weight loss in adults: main results of the Choose Healthy Options Consciously Everyday (CHOICE) randomized clinical trial. Am J Clin Nutr. 2012;95:555–63. https://doi.org/10.3945/ajcn.111.026278.
Zheng M, Allman-Farinelli M, Heitmann BL, Rangan A. Substitution of sugar-sweetened beverages with other beverage alternatives: a review of long-term health outcomes. J Acad Nutr Diet. 2015;115:767–79. https://doi.org/10.1016/j.jand.2015.01.006.
Pan A, Malik VS, Schulze MB, Manson JE, Willett WC, Hu FB. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am J Clin Nutr. 2012;95:1454–60. https://doi.org/10.3945/ajcn.111.032698%JTheAmericanJournalofClinicalNutrition.
Zhang Y, Lee ET, Cowan LD, Fabsitz RR, Howard BV. Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: the Strong Heart Study. Nutr Metab Cardiovasc Dis. 2011;21:418–23. https://doi.org/10.1016/j.numecd.2009.10.020.
Hu FB. Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes Rev. 2013;14:606–19. https://doi.org/10.1111/obr.12040.
Duffey KJ, Davy BM. The Healthy Beverage Index Is Associated with Reduced Cardiometabolic Risk in US Adults: A Preliminary Analysis. J Acad Nutr Diet. 2015;115:1682-9.e2. https://doi.org/10.1016/j.jand.2015.05.005.
Stookey JD, Constant F, Gardner CD, Popkin BM. Replacing sweetened caloric beverages with drinking water is associated with lower energy intake. Obesity (Silver Spring). 2007;15:3013–22. https://doi.org/10.1038/oby.2007.359.
Hernández-Cordero S, Barquera S, Rodríguez-Ramírez S, Villanueva-Borbolla MA, González de Cossio T, Dommarco JR, Popkin B. Substituting water for sugar-sweetened beverages reduces circulating triglycerides and the prevalence of metabolic syndrome in obese but not in overweight Mexican women in a randomized controlled trial. J Nutr. 2014;144:1742–52. https://doi.org/10.3945/jn.114.193490.
Duffey KJ, Poti J. Modeling the Effect of Replacing Sugar-Sweetened Beverage Consumption with Water on Energy Intake, HBI Score, and Obesity Prevalence Nutrients. 2016;8 https://doi.org/10.3390/nu8070395
Pereira MA. Sugar-sweetened and artificially-sweetened beverages in relation to obesity risk. Adv Nutr. 2014;5:797–808. https://doi.org/10.3945/an.114.007062.
Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6. https://doi.org/10.1038/nature13793.
Cheungpasitporn W, Thongprayoon C, Edmonds PJ, Srivali N, Ungprasert P, Kittanamongkolchai W, Erickson SB. Sugar and artificially sweetened soda consumption linked to hypertension: a systematic review and meta-analysis. Clin Exp Hypertens. 2015;37:587–93. https://doi.org/10.3109/10641963.2015.1026044.
• Huang M, Quddus A, Stinson L, Shikany JM, Howard BV, Kutob RM, Lu B, Manson JE, Eaton CB. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective Women’s Health Initiative observational study. Am J Clin Nutr. 2017;106:614–22. https://doi.org/10.3945/ajcn.116.145391. Of importance.
Fagherazzi G, Vilier A, Saes Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l’Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2013;97:517–23. https://doi.org/10.3945/ajcn.112.050997.
Yin J, Zhu Y, Malik V, Li X, Peng X, Zhang FF, Shan Z and Liu L. Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages and Risk of Cardiovascular Disease: A Meta-Analysis and Systematic Review. Advances in nutrition (Bethesda, Md.). 2021;12:89–101. https://doi.org/10.1093/advances/nmaa084
•• Pase MP, Himali JJ, Beiser AS, Aparicio HJ, Satizabal CL, Vasan RS, Seshadri S, Jacques PF. Sugar- and Artificially Sweetened Beverages and the Risks of Incident Stroke and Dementia: A Prospective Cohort Study. Stroke. 2017;48:1139–46. https://doi.org/10.1161/STROKEAHA.116.016027. Of major importance.
Bernstein AM, de Koning L, Flint AJ, Rexrode KM, Willett WC. Soda consumption and the risk of stroke in men and women. Am J Clin Nutr. 2012;95:1190–9. https://doi.org/10.3945/ajcn.111.030205.
Judah G, Mullan B, Yee M, Johansson L, Allom V, Liddelow C. A Habit-Based Randomised Controlled Trial to Reduce Sugar-Sweetened Beverage Consumption: the Impact of the Substituted Beverage on Behaviour and Habit Strength. Int J Behav Med. 2020;27:623–35. https://doi.org/10.1007/s12529-020-09906-4.
Leahy M, Ratliff JC, Riedt CS, Fulgoni VL. Consumption of Low-Calorie Sweetened Beverages Compared to Water Is Associated with Reduced Intake of Carbohydrates and Sugar, with No Adverse Relationships to Glycemic Responses: Results from the 2001–2012 National Health and Nutrition Examination Surveys Nutrients. 2017;9. https://doi.org/10.3390/nu9090928
Johnson RK, Lichtenstein AH, Anderson CAM, Carson JA, Després JP, Hu FB, Kris-Etherton PM, Otten JJ, Towfighi A, Wylie-Rosett J. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory From the American Heart Association. Circulation. 2018;138:e126–40. https://doi.org/10.1161/cir.0000000000000569.
Cabrera Escobar MA, Veerman JL, Tollman SM, Bertram MY, Hofman KJ. Evidence that a tax on sugar sweetened beverages reduces the obesity rate: a meta-analysis. BMC Public Health. 2013;13:1072. https://doi.org/10.1186/1471-2458-13-1072.
Grummon AH, Taillie LS, Golden SD, Hall MG, Ranney LM, Brewer NT. Sugar-Sweetened Beverage Health Warnings and Purchases: A Randomized Controlled Trial. Am J Prev Med. 2019;57:601–10. https://doi.org/10.1016/j.amepre.2019.06.019.
Acknowledgements
MK gratefully acknowledges the use of the services and facilities of the Koc University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.
Author information
Authors and Affiliations
Contributions
Contributed substantially to the conception or design of the work, or the acquisition, analysis, or interpretation of data for the work: Lale A. Ertuglu, Baris Afsar, Adrian Covic, Abdullah B. Yildiz, Mehmet Kanbay.
Drafted the work or revised it critically for important intellectual content: Baris Afsar, Adrian Covic, Alberto, Ortiz, Mehmet Kanbay. Approved the final version to be published: Lale A. Ertuglu, Adrian Covic, Abdullah B. Yildiz, Baris Afsar, Alberto Ortiz, Mehmet Kanbay
Corresponding author
Ethics declarations
Ethics Approval
Not applicable.
Consent to Participate
Not applicable
Consent for Publication
Not applicable
Conflict of Interest
The authors declare no competing interests.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Nutrition and Aging
Rights and permissions
About this article
Cite this article
Ertuglu, L.A., Afsar, B., Yildiz, A.B. et al. Substitution of Sugar-Sweetened Beverages for Other Beverages: Can It Be the Next Step Towards Healthy Aging?. Curr Nutr Rep 10, 399–412 (2021). https://doi.org/10.1007/s13668-021-00372-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13668-021-00372-2