Healthy Lifestyle and Cognition: Interaction between Diet and Physical Activity


Purpose of Review

This review discusses current research on the impact of specific dietary patterns and exercise, both individually and combined, on cognitive function in older adults.

Recent Findings

Observational evidence generally supports a relationship between diet adherence and positive cognitive outcomes related to memory, executive function, and risk for cognitive impairment; however, randomized controlled trials (RCTs) are limited. Exercise research is more extensive, showing improvements in cognitive performance after exercise interventions regardless of baseline cognitive status and noting lower incidences of cognitive impairment in people who engage in regular physical activity.


Evidence supports adherence to specific dietary patterns and a combination of aerobic and resistance exercise as an effective approach to mitigate age-associated cognitive decline. Further research on older adults at various stages of cognitive decline, as well as longer-term RCTs, will help determine the best clinical markers of early cognitive dysfunction, and the effectiveness of early lifestyle intervention on cognitive function.

This is a preview of subscription content, access via your institution.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Alzheimer's Association. 2019 Alzheimer's Disease Facts and Figures 2019.

  2. 2.

    Eleti S. Drugs in Alzheimer's disease dementia: an overview of current pharmacological management and future directions. Psychiatr Danub. 2016;28(Suppl-1):136–40.

    CAS  PubMed  Google Scholar 

  3. 3.

    • Cipollini V, Troili F, Giubilei F. Emerging biomarkers in vascular cognitive impairment and dementia: from pathophysiological pathways to clinical application. Int J Mol Sci. 2019;20(11). review evaluate pathophysiological pathways underlying vascular cognitive impairment. It discusses three main pathogenic pathways (endothelial dysfunction, blood brain barrier disruption, and nuroinflammation), as well as summarizes the evidence for and against several biomarkers.

  4. 4.

    Helman AM, Murphy MP. Vascular cognitive impairment: modeling a critical neurologic disease in vitro and in vivo. Biochim Biophys Acta. 2016;1862(5):975–82.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yurko-Mauro K, Alexander DD, Van Elswyk ME. Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One. 2015;10(3):e0120391.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zhang DM, Ye JX, Mu JS, Cui XP. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol. 2017;30(1):50–9.

    Article  PubMed  Google Scholar 

  8. 8.

    Smith PJ, Blumenthal JA. Dietary factors and cognitive decline. J Prev Alzheimers Dis. 2016;3(1):53–64.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    •• van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O. The Mediterranean, dietary approaches to stop hypertension (DASH), and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer's disease-a review. Adv Nutr. 2019;10(6):1040–65. recent systematic review summarizing the evidence examining an assoication between various dietary patterns with cognitive decline, dementia, and Alzheimer's Disease (AD) across 56 studies. In general, higher adherence to the MeDi, DASH, and MIND diet was associated with better cognitive scores and lower risk for dementia and AD in observational studies, but the strongest associations were observed for the MIND diet.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608.

    Article  PubMed  Google Scholar 

  11. 11.

    Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: a Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis. 2006;16(8):559–68.

    Article  PubMed  Google Scholar 

  12. 12.

    Folsom AR, Parker ED, Harnack LJ. Degree of concordance with DASH diet guidelines and incidence of hypertension and fatal cardiovascular disease. Am J Hypertens. 2007;20(3):225–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–20.

    Article  PubMed  Google Scholar 

  14. 14.

    Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shakersain B, Rizzuto D, Larsson SC, Faxen-Irving G, Fratiglioni L, Xu WL. The Nordic prudent diet reduces risk of cognitive decline in the Swedish older adults: a population-based cohort study. Nutrients. 2018;10(2).

  16. 16.

    Blumenthal JA, Smith PJ, Mabe S, Hinderliter A, Welsh-Bohmer K, Browndyke JN, et al. Lifestyle and neurocognition in older adults with cardiovascular risk factors and cognitive impairment. Psychosom Med. 2017;79(6):719–27.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Haring B, Wu C, Mossavar-Rahmani Y, Snetselaar L, Brunner R, Wallace RB, et al. No association between dietary patterns and risk for cognitive decline in older women with 9-year follow-up: data from the Women's Health Initiative Memory Study. J Acad Nutr Diet. 2016;116(6):921–30 e1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Berendsen AM, Kang JH, Feskens EJM, de Groot C, Grodstein F, van de Rest O. Association of long-term adherence to the MIND diet with cognitive function and cognitive decline in American women. J Nutr Health Aging. 2018;22(2):222–9.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Anastasiou CA, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, et al. Mediterranean diet and cognitive health: initial results from the Hellenic longitudinal investigation of ageing and diet. PLoS One. 2017;12(8):e0182048.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective diets are associated with better cognitive function: the health and retirement study. J Am Geriatr Soc. 2017;65(8):1857–62.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bajerska J, Wozniewicz M, Suwalska A, Jeszka J. Eating patterns are associated with cognitive function in the elderly at risk of metabolic syndrome from rural areas. Eur Rev Med Pharmacol Sci. 2014;18(21):3234–45.

    CAS  PubMed  Google Scholar 

  22. 22.

    Trichopoulou A, Kyrozis A, Rossi M, Katsoulis M, Trichopoulos D, La Vecchia C, et al. Mediterranean diet and cognitive decline over time in an elderly Mediterranean population. Eur J Nutr. 2015;54(8):1311–21.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer's disease. Alzheimers Dement. 2015;11(9):1007–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Koyama A, Houston DK, Simonsick EM, Lee JS, Ayonayon HN, Shahar DR, et al. Association between the Mediterranean diet and cognitive decline in a biracial population. J Gerontol A Biol Sci Med Sci. 2015;70(3):354–9.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Berendsen AAM, Kang JH, van de Rest O, Feskens EJM, de Groot L, Grodstein F. The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. J Am Med Dir Assoc. 2017;18(5):427–32.

    Article  PubMed  Google Scholar 

  26. 26.

    Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Morris MC, Tangney CC, Wang Y, Barnes LL, Bennett D, Aggarwal N. Mind diet score more predictive than Dash or Mediterranean diet scores. Alzheimers Dement. 2014;10(4):P166.

    Article  Google Scholar 

  28. 28.

    Hosking DE, Eramudugolla R, Cherbuin N, Anstey KJ. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement. 2019;15(4):581–9.

    Article  PubMed  Google Scholar 

  29. 29.

    •• Berti V, Walters M, Sterling J, Quinn CG, Logue M, Andrews R, et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology. 2018;90(20):e1789–e98. year longitudinal study examining Alzheimer disease (AD)-associated biomarker changes in cognitively normal middle aged participants with high vs low adherence to a Mediterranean-style diet. Lower diet adherence was associated with progressive AD biomarker abnormalities in middle-aged adults.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pelletier A, Barul C, Feart C, Helmer C, Bernard C, Periot O, et al. Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimers Dement. 2015;11(9):1023–31.

    Article  PubMed  Google Scholar 

  31. 31.

    Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR, Luchsinger JA, et al. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology. 2015;85(20):1744–51.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sanchez-Villegas A, Galbete C, Martinez-Gonzalez MA, Martinez JA, Razquin C, Salas-Salvado J, et al. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: the PREDIMED-NAVARRA randomized trial. Nutr Neurosci. 2011;14(5):195–201.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martinez-Gonzalez MA, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–103.

    Article  PubMed  Google Scholar 

  34. 34.

    Martinez-Lapiscina EH, Clavero P, Toledo E, San Julian B, Sanchez-Tainta A, Corella D, et al. Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging. 2013;17(6):544–52.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Martinez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvado J, San Julian B, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318–25.

    Article  PubMed  Google Scholar 

  36. 36.

    Knight A, Bryan J, Wilson C, Hodgson JM, Davis CR, Murphy KJ. The Mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: The MedLey Study. Nutrients. 2016;8(9).

  37. 37.

    Wardle J, Rogers P, Judd P, Taylor MA, Rapoport L, Green M, et al. Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function. Am J Med. 2000;108(7):547–53.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Marseglia A, Xu W, Fratiglioni L, Fabbri C, Berendsen AAM, Bialecka-Debek A, et al. Effect of the NU-AGE diet on cognitive functioning in older adults: a randomized controlled trial. Front Physiol. 2018;9:349.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Smith PJ, Blumenthal JA, Babyak MA, Craighead L, Welsh-Bohmer KA, Browndyke JN, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010;55(6):1331–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    McEvoy CT, Leng Y, Peeters GM, Kaup AR, Allen IE, Yaffe K. Interventions involving a major dietary component improve cognitive function in cognitively healthy adults: a systematic review and meta-analysis. Nutr Res. 2019;66:1–12.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Middleton LE, Barnes DE, Lui LY, Yaffe K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc. 2010;58(7):1322–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Yang M, Guo Y, Gong J, Deng M, Yang N, Yan Y. Relationships between functional fitness and cognitive impairment in Chinese community-dwelling older adults: a cross-sectional study. BMJ Open. 2018;8(5):e020695.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sherwood JJ, Inouye C, Webb SL, Zhou A, Anderson EA, Spink NS. Relationship between physical and cognitive performance in community dwelling, ethnically diverse older adults: a cross-sectional study. PeerJ. 2019;7:e6159.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kobayashi-Cuya KE, Sakurai R, Suzuki H, Ogawa S, Takebayashi T, Fujiwara Y. Observational evidence of the association between handgrip strength, hand dexterity, and cognitive performance in community-dwelling older adults: a systematic review. J Epidemiol. 2018;28(9):373–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Deeny SP, Poeppel D, Zimmerman JB, Roth SM, Brandauer J, Witkowski S, et al. Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers. Biol Psychol. 2008;78(2):179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Barnes DE, Santos-Modesitt W, Poelke G, Kramer AF, Castro C, Middleton LE, et al. The mental activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med. 2013;173(9):797–804.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Brown AK, Liu-Ambrose T, Tate R, Lord SR. The effect of group-based exercise on cognitive performance and mood in seniors residing in intermediate care and self-care retirement facilities: a randomised controlled trial. Br J Sports Med. 2009;43(8):608–14.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Morris JK, Vidoni ED, Johnson DK, Van Sciver A, Mahnken JD, Honea RA, et al. Aerobic exercise for Alzheimer's disease: a randomized controlled pilot trial. PLoS One. 2017;12(2):e0170547.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018;52(3):154–60.

    Article  PubMed  Google Scholar 

  50. 50.

    Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Saez de Asteasu ML, Martinez-Velilla N, Zambom-Ferraresi F, Casas-Herrero A, Izquierdo M. Role of physical exercise on cognitive function in healthy older adults: a systematic review of randomized clinical trials. Ageing Res Rev. 2017;37:117–34.

    Article  PubMed  Google Scholar 

  52. 52.

    Cao ZB, Sasaki A, Oh T, Miyatake N, Tsushita K, Higuchi M, et al. Association between dietary intake of micronutrients and cardiorespiratory fitness in Japanese men. J Nutr Sci. 2012;1:e12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Gillman MW, Pinto BM, Tennstedt S, Glanz K, Marcus B, Friedman RH. Relationships of physical activity with dietary behaviors among adults. Prev Med. 2001;32(3):295–301.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Parsons TJ, Power C, Manor O. Longitudinal physical activity and diet patterns in the 1958 British birth cohort. Med Sci Sports Exerc. 2006;38(3):547–54.

    Article  PubMed  Google Scholar 

  55. 55.

    Jakicic JM, Wing RR, Winters-Hart C. Relationship of physical activity to eating behaviors and weight loss in women. Med Sci Sports Exerc. 2002;34(10):1653–9.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Mancini JG, Filion KB, Atallah R, Eisenberg MJ. Systematic review of the Mediterranean diet for long-term weight loss. Am J Med. 2016;129(4):407–15 e4.

    Article  PubMed  Google Scholar 

  57. 57.

    Attuquayefio T, Stevenson RJ. A systematic review of longer-term dietary interventions on human cognitive function: emerging patterns and future directions. Appetite. 2015;95:554–70.

    Article  PubMed  Google Scholar 

  58. 58.

    Horie NC, Serrao VT, Simon SS, Gascon MR, Dos Santos AX, Zambone MA, et al. Cognitive effects of intentional weight loss in elderly obese individuals with mild cognitive impairment. J Clin Endocrinol Metab. 2016;101(3):1104–12.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    •• Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63. controlled trial comparing the effects of a 2 year multidomain intervention (diet, exercise, cognitive training, vascular risk monitoring) to a control (general health advice). Results suggest that the multidomain intervention improves cognitive function (general, executive function, and speed processing) to a greater extent than the control.

    Article  Google Scholar 

  60. 60.

    Gligoroska JP, Manchevska S. The effect of physical activity on cognition - physiological mechanisms. Mater Soc. 2012;24(3):198–202.

    Article  Google Scholar 

  61. 61.

    Teixeira JP, de Castro AA, Soares FV, da Cunha EFF, Ramalho TC. Future therapeutic perspectives into the Alzheimer's disease targeting the oxidative Stress hypothesis. Molecules. 2019;24(23).

  62. 62.

    Howe PRC, Evans HM, Kuszewski JC, Wong RHX. Effects of long chain omega-3 polyunsaturated fatty acids on brain function in mildly hypertensive older adults. Nutrients. 2018;10(10).

  63. 63.

    Cordero JG, Garcia-Escudero R, Avila J, Gargini R, Garcia-Escudero V. Benefit of oleuropein aglycone for Alzheimer's disease by promoting autophagy. Oxidative Med Cell Longev. 2018;2018:5010741.

    CAS  Article  Google Scholar 

  64. 64.

    Bailey DM, Marley CJ, Brugniaux JV, Hodson D, New KJ, Ogoh S, et al. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke. 2013;44(11):3235–8.

    Article  PubMed  Google Scholar 

  65. 65.

    Ainslie PN, Cotter JD, George KP, Lucas S, Murrell C, Shave R, et al. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol. 2008;586(16):4005–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Takahashi M, Miyashita M, Park JH, Kawanishi N, Bae SR, Nakamura Y, et al. Low-volume exercise training and vitamin E supplementation attenuates oxidative stress in postmenopausal women. J Nutr Sci Vitaminol (Tokyo). 2013;59(5):375–83.

    CAS  Article  Google Scholar 

  67. 67.

    Freitas HR, Ferreira GDC, Trevenzoli IH, Oliveira KJ, de Melo Reis RA. Fatty acids, antioxidants and physical activity in brain aging. Nutrients. 2017;9(11).

  68. 68.

    Cetin E, Top EC, Sahin G, Ozkaya YG, Aydin H, Toraman F. Effect of vitamin E supplementation with exercise on cognitive functions and total antioxidant capacity in older people. J Nutr Health Aging. 2010;14(9):763–9.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Sartorius T, Ketterer C, Kullmann S, Balzer M, Rotermund C, Binder S, et al. Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior. Diabetes. 2012;61(7):1669–79.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Assmann KE, Adjibade M, Hercberg S, Galan P, Kesse-Guyot E. Unsaturated fatty acid intakes during midlife are positively associated with later cognitive function in older adults with modulating effects of antioxidant supplementation. J Nutr. 2018;148(12):1938–45.

    Article  PubMed  Google Scholar 

  71. 71.

    Witte AV, Kerti L, Hermannstadter HM, Fiebach JB, Schreiber SJ, Schuchardt JP, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex. 2014;24(11):3059–68.

    Article  PubMed  Google Scholar 

  72. 72.

    Liu HL, Zhao G, Cai K, Zhao HH, Shi LD. Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res. 2011;218(2):308–14.

    Article  PubMed  Google Scholar 

  73. 73.

    Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science. 2018;361(6406).

  74. 74.

    de Assis GG, de Almondes KM. Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. A Systematic Review Front Psychol. 2017;8:584.

    Article  PubMed  Google Scholar 

  75. 75.

    Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience. 2008;155(3):751–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Sakr HF, Abbas AM, El Samanoudy AZ. Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats. J Physiol Pharmacol. 2015;66(2):191–202.

    CAS  PubMed  Google Scholar 

  77. 77.

    Gomez-Pinilla F, Nguyen TT. Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders. Nutr Neurosci. 2012;15(3):127–33.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Douaud G, Refsum H, de Jager CA, Jacoby R, Nichols TE, Smith SM, et al. Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman AB, et al. Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology. 2010;75(16):1415–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Rovio S, Spulber G, Nieminen LJ, Niskanen E, Winblad B, Tuomilehto J, et al. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging. 2010;31(11):1927–36.

    Article  PubMed  Google Scholar 

  81. 81.

    Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–70.

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Voss MW, Heo S, Prakash RS, Erickson KI, Alves H, Chaddock L, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum Brain Mapp. 2013;34(11):2972–85.

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Leckie RL, Manuck SB, Bhattacharjee N, Muldoon MF, Flory JM, Erickson KI. Omega-3 fatty acids moderate effects of physical activity on cognitive function. Neuropsychologia. 2014;59:103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kobe T, Witte AV, Schnelle A, Lesemann A, Fabian S, Tesky VA, et al. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage. 2016;131:226–38.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Muldoon MF, Ryan CM, Yao JK, Conklin SM, Manuck SB. Long-chain omega-3 fatty acids and optimization of cognitive performance. Mil Med. 2014;179(11 Suppl):95–105.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Jannusch K, Jockwitz C, Bidmon HJ, Moebus S, Amunts K, Caspers S. A complex interplay of vitamin B1 and B6 metabolism with cognition, brain structure, and functional connectivity in older adults. Front Neurosci. 2017;11:596.

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A. 2004;101(9):3316–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Liu-Ambrose T, Nagamatsu LS, Voss MW, Khan KM, Handy TC. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol Aging. 2012;33(8):1690–8.

    Article  PubMed  Google Scholar 

  90. 90.

    Carmichael OT, Pillai S, Shankapal P, McLellan A, Kay DG, Gold BT, et al. A combination of essential fatty acids, Panax ginseng extract, and green tea catechins modifies brain fMRI signals in healthy older adults. J Nutr Health Aging. 2018;22(7):837–46.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    McGregor KM, Crosson B, Krishnamurthy LC, Krishnamurthy V, Hortman K, Gopinath K, et al. Effects of a 12-week aerobic spin intervention on resting state networks in previously sedentary older adults. Front Psychol. 2018;9:2376.

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Flodin P, Jonasson LS, Riklund K, Nyberg L, Boraxbekk CJ. Does aerobic exercise influence intrinsic brain activity? An Aerobic Exercise Intervention among Healthy Old Adults. Front Aging Neurosci. 2017;9:267.

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Macpherson H, Brownell S, Duckham RL, Meyer B, Mirzaee S, Daly RM. Multifaceted intervention to enhance cognition in older people at risk of cognitive decline: study protocol for the protein omega-3 and vitamin D exercise research (PONDER) study. BMJ Open. 2019;9(5):e024145.

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Montero-Odasso M, Almeida QJ, Burhan AM, Camicioli R, Doyon J, Fraser S, et al. SYNERGIC TRIAL (SYNchronizing exercises, remedies in gait and cognition) a multi-Centre randomized controlled double blind trial to improve gait and cognition in mild cognitive impairment. BMC Geriatr. 2018;18(1):93.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Baker LD, Beavers DP, Cleveland M, Day CE, Decarli C, Espeland MA, et al. U.S. POINTER: study design and launch. Alzheimers Dement. 2019;15(7):P1262–P3.

    Article  Google Scholar 

  96. 96.

    Singh B, Parsaik AK, Mielke MM, Erwin PJ, Knopman DS, Petersen RC, et al. Association of Mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39(2):271–82.

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Loughrey DG, Lavecchia S, Brennan S, Lawlor BA, Kelly ME. The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Adv Nutr. 2017;8(4):571–86.

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Gheysen F, Poppe L, DeSmet A, Swinnen S, Cardon G, De Bourdeaudhuij I, et al. Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2018;15(1):63–13.

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Bowman GL, Shannon J, Ho E, Traber MG, Frei B, Oken BS, et al. Reliability and validity of food frequency questionnaire and nutrient biomarkers in elders with and without mild cognitive impairment. Alzheimer Dis Assoc Disord. 2011;25(1):49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Herbolsheimer F, Riepe MW, Peter R. Cognitive function and the agreement between self-reported and accelerometer-accessed physical activity. BMC Geriatr. 2018;18(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This review was supported by funds from Career Development Awards (IK2 RX-001788-01) from the United States (US) Department of Veterans Affairs Rehabilitation R&D (Rehab RD) Service and the San Antonio and Baltimore VA GRECCs.

Author information



Corresponding author

Correspondence to Monica C. Serra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition and Aging

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serra, M.C., Dondero, K.R., Larkins, D. et al. Healthy Lifestyle and Cognition: Interaction between Diet and Physical Activity. Curr Nutr Rep 9, 64–74 (2020).

Download citation


  • Dietary patterns
  • Physical activity
  • Cognitive impairment