Skip to main content

Ketogenic Diet: an Endocrinologist Perspective

Abstract

Purpose of Review

Obesity and its related comorbidities make up a large part of healthcare expenditures. Despite a wide array of options for treatment of obesity, rates of sustained weight loss continue to be low, leading patients to seek alternative treatment options. Although the first medically utilized ketogenic diet was described nearly 100 years ago, it has made a resurgence as a treatment option for obesity. Despite increased popularity in the lay public and increased use of ketogenic dietary strategies for metabolic therapy, we are still beginning to unravel the metabolic impact of long-term dietary ketosis.

Recent Findings

There are a number of recent trials that have highlighted the short- and long-term benefits of ketogenic diet on weight, glycemic control, and other endocrine functions including reproductive hormones.

Summary

This review is a summary of available data on the effectiveness and durability of the ketogenic diet when compared to conventional interventions. Ketogenic dietary strategies may play a role in short-term improvement of important metabolic parameters with potential for long-term benefit. However, response may vary due to inter-individual ability to maintain long-term carbohydrate restriction.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Biener, A., J. Cawley, and C. Meyerhoefer, The high and rising costs of obesity to the US health care system. 2017, Springer.

  2. Ng M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.

    PubMed  PubMed Central  Google Scholar 

  3. •• Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27 (A global study showing the impact of obesity in the last 2 decades, reported a two fold increase in obesity from the 1980s).

    Google Scholar 

  4. Flegal KM, et al. Trends in Obesity Among Adults in the United States, 2005 to 2014. Jama. 2016;315(21):2284–91.

    CAS  PubMed  Google Scholar 

  5. Bray MS, et al. NIH working group report-using genomic information to guide weight management: from universal to precision treatment. Obesity (Silver Spring). 2016;24(1):14–22.

    Google Scholar 

  6. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. 2015;161(1):119–32.

    PubMed  Google Scholar 

  7. Church TS, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One. 2011;6(5):e19657.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. McAllister EJ, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868–913.

    PubMed  PubMed Central  Google Scholar 

  9. Tchkonia T, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17(5):644–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860.

    CAS  PubMed  Google Scholar 

  11. Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376(3):254–66.

    CAS  PubMed  Google Scholar 

  12. Ryan DH. Guidelines for obesity management. Endocrinol Metab Clin N Am. 2016;45(3):501–10.

    Google Scholar 

  13. Velapati SR, et al. Weight regain after bariatric surgery: prevalence, etiology, and treatment. Curr Nutr Rep. 2018;7(4):329–34.

    PubMed  Google Scholar 

  14. Wheless JW. History of the ketogenic diet. Epilepsia. 2008;49(Suppl 8):3–5.

    PubMed  Google Scholar 

  15. Wilder RM, Winter MD. The threshold of ketogenesis. J Biol Chem. 1922;52(2):393–401.

    CAS  Google Scholar 

  16. HELMHOLZ HF. The treatment of epilepsy in childhood: five years’ experience with the ketogenic diet. JAMA. 1927;88(26):2028–32.

    Google Scholar 

  17. Peterman M. The ketogenic diet in epilepsy. J Am Med Assoc. 1925;84(26):1979–83.

    Google Scholar 

  18. Westman EC, Yancy WS, Humphreys M. Dietary treatment of diabetes mellitus in the pre-insulin era (1914-1922). Perspect Biol Med. 2006;49(1):77–83 https://muse.jhu.edu/ (accessed June 30, 2019).

    PubMed  Google Scholar 

  19. Atkins RD. Dr. Government Institutes: Atkins’ new diet revolution; 2002.

    Google Scholar 

  20. Feinman RD, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition. 2015;31(1):1–13.

    CAS  PubMed  Google Scholar 

  21. Kossoff EH, Dorward JL. The modified Atkins diet. Epilepsia. 2008;49(Suppl 8):37–41.

    CAS  PubMed  Google Scholar 

  22. Westman EC, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007;86(2):276–84.

    CAS  PubMed  Google Scholar 

  23. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fat Acids. 2004;70(3):309–19.

    CAS  Google Scholar 

  24. Thomsen HH, et al. Effects of 3-hydroxybutyrate and free fatty acids on muscle protein kinetics and signaling during LPS-induced inflammation in humans: anticatabolic impact of ketone bodies. Am J Clin Nutr. 2018;108(4):857–67.

    PubMed  Google Scholar 

  25. Koppel SJ, Swerdlow RH. Neuroketotherapeutics: a modern review of a century-old therapy. Neurochem Int. 2018;117:114–25.

    CAS  PubMed  Google Scholar 

  26. Crawford P. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Biophys J. 2019;116(3, Supplement 1):2a.

    Google Scholar 

  27. Ma D, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep. 2018;8(1):6670.

    PubMed  PubMed Central  Google Scholar 

  28. Kuchkuntla AR, et al. Fad diets: hype or hope? Curr Nutr Rep. 2018;7(4):310–23.

    PubMed  Google Scholar 

  29. Newsholme EA, Dimitriadis G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S122–34.

    CAS  PubMed  Google Scholar 

  30. Plum L, Belgardt BF, Brüning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Taborsky GJ Jr. The physiology of glucagon. SAGE Publications. 2010;4(6):1338–44.

    Google Scholar 

  32. Xiong J. Fatty acid oxidation in cell fate determination. Trends Biochem Sci. 2018;43(11):854–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rui L. Energy metabolism in the liver. Compr Physiol. 2011;4(1):177–97.

    Google Scholar 

  34. Cahill G, et al. Hormone-fuel interrelationships during fasting. J Clin Invest. 1966;45(11):1751–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. VanItallie TB, Nufert TH. Ketones: metabolism’s ugly duckling. Nutr Rev. 2003;61(10):327–41.

    PubMed  Google Scholar 

  36. Gupta L, et al. Ketogenic diet in endocrine disorders: current perspectives. J Postgrad Med. 2017;63(4):242–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412–26.

    CAS  PubMed  Google Scholar 

  38. Reichard G, et al. Ketone-body production and oxidation in fasting obese humans. J Clin Invest. 1974;53(2):508–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Owen OE, et al. Comparative measurements of glucose, beta-hydroxybutyrate, acetoacetate, and insulin in blood and cerebrospinal fluid during starvation. Metabolism. 1974;23(1):7–14.

    CAS  PubMed  Google Scholar 

  40. Atkins RC, D.A.D. Revolution. The high calorie way to stay thin forever. New York: McKay Co.; 1972.

    Google Scholar 

  41. Atkins, R.C., Dr. Atkins’ diet revolution. 1981: Bantam Books New York.

  42. Heinbecker P. Studies on the metabolism. J Biol Chem. 1928;80:461–75.

    CAS  Google Scholar 

  43. Jungas RL, Halperin ML, Brosnan JT. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev. 1992;72(2):419–48.

    CAS  PubMed  Google Scholar 

  44. Volek JS, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metab-Clin Exp. 2002;51(7):864–70.

    CAS  PubMed  Google Scholar 

  45. Ludwig DS, Friedman MI. Increasing adiposity: consequence or cause of overeating? Jama. 2014;311(21):2167–8.

    CAS  PubMed  Google Scholar 

  46. Kabir M, et al. A high glycemic index starch diet affects lipid storage–related enzymes in normal and to a lesser extent in diabetic rats. J Nutr. 1998;128(11):1878–83.

    CAS  PubMed  Google Scholar 

  47. Hall KD. A review of the carbohydrate-insulin model of obesity. Eur J Clin Nutr. 2017;71(3):323–6.

    CAS  PubMed  Google Scholar 

  48. Howell S, Kones R. “Calories in, calories out” and macronutrient intake: the hope, hype, and science of calories. Am J Physiol Endocrinol Metab. 2017;313(5):E608–e612.

    PubMed  Google Scholar 

  49. Klein S, Wolfe RR. Carbohydrate restriction regulates the adaptive response to fasting. Am J Phys. 1992;262(5 Pt 1):E631–6.

    CAS  Google Scholar 

  50. Cox PJ, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24(2):256–68.

    CAS  PubMed  Google Scholar 

  51. Goedecke JH, et al. Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism. 1999;48(12):1509–17.

    CAS  PubMed  Google Scholar 

  52. Westman EC, et al. A review of low-carbohydrate ketogenic diets. Curr Atheroscler Rep. 2003;5(6):476–83.

    PubMed  Google Scholar 

  53. Kuchkuntla AR, et al. Fad diets: hype or hope? Current nutrition reports. 2018;7(4):310–23.

    PubMed  Google Scholar 

  54. Ebbeling CB, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. Jama. 2012;307(24):2627–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hall KD, et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men, 2. Am J Clin Nutr. 2016;104(2):324–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. •• Ebbeling CB, et al. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ. 2018;363:k4583 (An important study evaluating the physiological changes with weight loss on Ketogenic diet focussing on energy expenditure).

    PubMed  PubMed Central  Google Scholar 

  57. Cheatham B, Kahn CR. Insulin action and the insulin signaling network*. Endocr Rev. 1995;16(2):117–42.

    CAS  PubMed  Google Scholar 

  58. Smith U, et al. Insulin signaling and action in fat cells: associations with insulin resistance and type 2 diabetes. Ann N Y Acad Sci. 1999;892(1):119–26.

    CAS  PubMed  Google Scholar 

  59. Kelley DE, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996;97(12):2705–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rothman DL, et al. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci. 1995;92(4):983–7.

    CAS  PubMed  Google Scholar 

  61. Shulman GI, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322(4):223–8.

    CAS  PubMed  Google Scholar 

  62. Yang Q, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356.

    CAS  PubMed  Google Scholar 

  63. Perseghin G, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48(8):1600–6.

    CAS  PubMed  Google Scholar 

  64. Roden M, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Carey DG, et al. Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes. 1996;45(5):633–8.

    CAS  PubMed  Google Scholar 

  66. Jung U, Choi M-S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.

    PubMed  PubMed Central  Google Scholar 

  67. •• Volek JS, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism. 2002;51(7):864–70 (A key study that evaluated the effects of KD on endocrine changes).

    CAS  PubMed  Google Scholar 

  68. Krauss RM, et al. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr. 2006;83(5):1025–31 quiz 1205.

    CAS  PubMed  Google Scholar 

  69. Hu T, et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176(Suppl 7):S44–54.

    PubMed  PubMed Central  Google Scholar 

  70. •• Samaha FF, et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med. 2003;348(21):2074–81 (One of the earliest RCTs comparing the KD vs Low fat diet, showing the weight loss potential of KD).

    CAS  PubMed  Google Scholar 

  71. •• Dansinger ML, et al. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293(1):43–53 (A key landmark study comparing the metabolic effects and weight loss potentials of different diets).

    CAS  PubMed  Google Scholar 

  72. •• Shai I, et al. Weight loss with a low-carbohydrate, mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41 (One of the long term RCTs comparing the effectiveness of different diets and their implications into clinical practice).

    CAS  PubMed  Google Scholar 

  73. Abbasi J. Interest in the ketogenic diet grows for weight loss and type 2 diabetes. Jama. 2018;319(3):215–7.

    PubMed  Google Scholar 

  74. Westman EC, et al. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab. 2008;5(1):36.

    Google Scholar 

  75. Hussain TA, et al. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28(10):1016–21.

    CAS  PubMed  Google Scholar 

  76. Yancy WS, et al. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab. 2005;2(1):34.

    Google Scholar 

  77. •• Meng Y, et al. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2017;131:124–31 (Systematic review of 7 RCTs evaluating the effectiveness of KD in T2DM).

    CAS  PubMed  Google Scholar 

  78. Huntriss R, Campbell M, Bedwell C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr. 2018;72(3):311–25.

    CAS  PubMed  Google Scholar 

  79. •• Davis NJ, et al. Comparative study of the effects of a 1-year dietary intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes. Diabetes Care. 2009;32(7):1147–52 (An important RCT showing the short-term benefits of KD in glycemic control).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Guldbrand H, et al. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia. 2012;55(8):2118–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Oyabu C, et al. Impact of low-carbohydrate diet on renal function: a meta-analysis of over 1000 individuals from nine randomised controlled trials. Br J Nutr. 2016;116(4):632–8.

    CAS  PubMed  Google Scholar 

  82. Bonikowska K, Magnusson P, Sjoholm A. Life-threatening ketoacidosis in patients with type 2 diabetes on LCHF diet. Lakartidningen. 2018;115:E4AD.

    PubMed  Google Scholar 

  83. Clifton PM, Condo D, Keogh JB. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets--a systematic review and meta analysis. Nutr Metab Cardiovasc Dis. 2014;24(3):224–35.

    CAS  PubMed  Google Scholar 

  84. Sim KA, et al. Weight loss improves reproductive outcomes in obese women undergoing fertility treatment: a randomized controlled trial. Clin Obes. 2014;4(2):61–8.

    CAS  PubMed  Google Scholar 

  85. Sim KA, Partridge SR, Sainsbury A. Does weight loss in overweight or obese women improve fertility treatment outcomes? A systematic review. Obes Rev. 2014;15(10):839–50.

    CAS  PubMed  Google Scholar 

  86. McGrice M, Porter J. The effect of low carbohydrate diets on fertility hormones and outcomes in overweight and obese women: a systematic review. Nutrients. 2017;9(3):204.

    PubMed Central  Google Scholar 

  87. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;352(12):1223–36.

    CAS  PubMed  Google Scholar 

  88. Moran LJ, et al. Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines. J Acad Nutr Diet. 2013;113(4):520–45.

    PubMed  Google Scholar 

  89. Mavropoulos JC, et al. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab. 2005;2(1):35.

    Google Scholar 

  90. Volek JS, et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65(3):100–10.

    CAS  PubMed  Google Scholar 

  91. Urbain P, et al. Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. Nutr Metab. 2017;14(1):17.

    Google Scholar 

  92. Paoli A, et al. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J Int Soc Sports Nutr. 2012;9(1):34.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wilson JM, et al., The effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training males. J Strength Cond Res, 2017.

  94. Santos HO. Ketogenic diet and testosterone increase: is the increased cholesterol intake responsible? To what extent and under what circumstances can there be benefits? Hormones (Athens). 2017;16(3):266–70.

    Google Scholar 

  95. Kopp W. Nutrition, evolution and thyroid hormone levels - a link to iodine deficiency disorders? Med Hypotheses. 2004;62(6):871–5.

    CAS  PubMed  Google Scholar 

  96. Pasquali R, et al. Relationships between iodothyronine peripheral metabolism and ketone bodies during hypocaloric dietary manipulations. J Endocrinol Investig. 1983;6(2):81–9.

    CAS  Google Scholar 

  97. Reinhardt W, et al. Effect of small doses of iodine on thyroid function during caloric restriction in normal subjects. Horm Res. 1993;39(3-4):132–7.

    CAS  PubMed  Google Scholar 

  98. Serog P, et al. Effects of slimming and composition of diets on VO2 and thyroid hormones in healthy subjects. Am J Clin Nutr. 1982;35(1):24–35.

    CAS  PubMed  Google Scholar 

  99. •• Kose E, et al. Changes of thyroid hormonal status in patients receiving ketogenic diet due to intractable epilepsy. J Pediatr Endocrinol Metab. 2017;30(4):411–6 (Pediatric study that has reported a risk of hypothyroidism with long-term use of KD).

    CAS  Google Scholar 

  100. Iacovides S, Meiring RM. The effect of a ketogenic diet versus a high-carbohydrate, low-fat diet on sleep, cognition, thyroid function, and cardiovascular health independent of weight loss: study protocol for a randomized controlled trial. Trials. 2018;19(1):62.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manpreet Mundi and Ryan Hurt formulated an outline of the manuscript. Aravind Kuchkuntla created the first draft. Manpreet Mundi, Meera Shah, Aravind Kuchkuntla, Saketh Velapati, Victoria Gershuni, Tamim Rajjo, Sanjeev Nanda, and Ryan Hurt critically revised the manuscript. All authors agree to be responsible for its content.

Corresponding author

Correspondence to Manpreet S. Mundi.

Ethics declarations

Conflict of Interest

Aravind Reddy Kuchkuntla declares that he has no conflict of interest.

Meera Shah declares that she has no conflict of interest.

Saketh Velapati declares that he has no conflict of interest.

Victoria M. Gershuni declares that she has no conflict of interest.

Tamim Rajjo declares that he has no conflict of interest.

Sanjeev Nanda declares that he has no conflict of interest.

Ryan T. Hurt has served as a consultant for Nestlé.

Manpreet S. Mundi has received research funding from Fresenius Kabi, Nestlé, and Real Food Blends.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuchkuntla, A.R., Shah, M., Velapati, S. et al. Ketogenic Diet: an Endocrinologist Perspective. Curr Nutr Rep 8, 402–410 (2019). https://doi.org/10.1007/s13668-019-00297-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-019-00297-x

Keywords

  • Obesity
  • Diabetes
  • Ketogenic diet
  • Weight loss