Skip to main content
Log in

Protein Supplementation in Sport: Source, Timing, and Intended Benefits

  • Gastroenterology, Critical Care, and Lifestyle Medicine (SA McClave, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to provide background on the present literature regarding the utility and effectiveness of protein supplements, including protein source and nutrient timing.

Recent Findings

In the setting of adequate dietary protein consumption, research suggests some benefit particularly in sport or exercise activities.

Summary

Protein supplements command a multi-billion-dollar market with prevalent use in sports. Many individuals, including athletes, do not consume optimal dietary protein on a daily basis. High-protein diets are remarkably safe in healthy subjects, especially in the short term. Some objective outcomes are physiologic and may not translate to clinically relevant outcomes. Athletes should, however, consider long-term implications when consuming high quantities of protein in dietary or supplement form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grout A, McClave SA, Jampolis MB, et al. Basic Principles of Sports Nutrition. Curr Nutr Rep. 2016;5(213).

    Article  CAS  Google Scholar 

  2. Arciero PJ, Edmonds RC, Bunsawat K, et al. Protein-Pacing from Food or Supplementation Improves Physical Performance in Overweight Men and Women: The PRISE 2 Study. Nutrients. 2016;8(5).

    Article  PubMed Central  CAS  Google Scholar 

  3. GVR. Protein Supplements Market Size, Share & Trends Analysis Report By Product (Powder, Ready to Drink), By Application, By Raw Material, By Source, By Distribution Channel, By Region, And Segment Forecasts, 2019 - 2025. Grandview Research. https://www.grandviewresearch.com/industry-analysis/protein-supplements-market. Published 2019. Updated April 2019. Accessed 20 May 2019, 2019.

  4. Knapik JJ, Steelman RA, Hoedebecke SS, Austin KG, Farina EK, Lieberman HR. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2016;46(1):103–23.

    Article  PubMed  Google Scholar 

  5. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc. 2016;48(3):543–68.

    Article  CAS  PubMed  Google Scholar 

  6. Noakes T, Volek JS, Phinney SD. Low-carbohydrate diets for athletes: what evidence? Br J Sports Med. 2014;48(14):1077–8.

    Article  PubMed  Google Scholar 

  7. Samal JRK, Samal IR. Protein Supplements: Pros and Cons. J Diet Suppl. 2018;15(3):365–71.

    Article  CAS  PubMed  Google Scholar 

  8. Aragon AA, Schoenfeld BJ, Wildman R, et al. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr. 2017;14:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. •• Jager R, Kerksick CM, Campbell BI, et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20 Recent, thorough review of essentially all considerations of protein and exercise. The current article describes several new studies not included in this 2017 review.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wu G. Dietary protein intake and human health. Food Funct. 2016;7(3):1251–65.

    Article  CAS  PubMed  Google Scholar 

  11. Schoenfeld BJ, Aragon AA. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J Int Soc Sports Nutr. 2018;15:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Groen BB, Horstman AM, Hamer HM, et al. Post-Prandial Protein Handling: You Are What You Just Ate. PloS one. 2015;10(11):e0141582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Damas F, Phillips S, Vechin FC, Ugrinowitsch C. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med. 2015;45(6):801–7.

    Article  PubMed  Google Scholar 

  14. Naderi A, de Oliveira EP, Ziegenfuss TN, Willems MT. Timing, Optimal Dose and Intake Duration of Dietary Supplements with Evidence-Based Use in Sports Nutrition. J Exerc Nutrition Biochem. 2016;20(4):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fontana L, Vinciguerra M, Longo VD. Growth factors, nutrient signaling, and cardiovascular aging. Circ Res. 2012;110(8):1139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25(11):558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tinsley GM, Forsse JS, Butler NK, Paoli A, Bane AA, la Bounty PM, et al. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci. 2017;17(2):200–7.

    Article  PubMed  Google Scholar 

  18. Antonio J, Ellerbroek A, Silver T, et al. A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males. J Nutr Metab. 2016;2016:9104792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Manninen AH. High-Protein Weight Loss Diets and Purported Adverse Effects: Where Is the Evidence? J Int Soc Sport Nutr. 2004;1:45–51.

    Article  Google Scholar 

  20. Calvez J, Poupin N, Chesneau C, Lassale C, Tome D. Protein intake, calcium balance and health consequences. Eur J Clin Nutr. 2012;66(3):281–95.

    Article  CAS  PubMed  Google Scholar 

  21. Devries MC, Sithamparapillai A, Brimble KS, Banfield L, Morton RW, Phillips SM. Changes in Kidney Function Do Not Differ between Healthy Adults Consuming Higher- Compared with Lower- or Normal-Protein Diets: A Systematic Review and Meta-Analysis. J Nutr. 2018;148(11):1760–75.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Santesso N, Akl EA, Bianchi M, Mente A, Mustafa R, Heels-Ansdell D, et al. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur J Clin Nutr. 2012;66(7):780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Delimaris I. Adverse Effects Associated with Protein Intake above the Recommended Dietary Allowance for Adults. ISRN Nutr. 2013;2013:126929 Review of various concerns related to a high protein diet. As discussed in the paper, this is a contentious topic with experts on both sides.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. McLellan TM, Pasiakos SM, Lieberman HR. Effects of protein in combination with carbohydrate supplements on acute or repeat endurance exercise performance: a systematic review. Sports Med. 2014;44(4):535–50.

    Article  PubMed  Google Scholar 

  25. Pasiakos SM, Margolis LM, Orr JS. Optimized dietary strategies to protect skeletal muscle mass during periods of unavoidable energy deficit. FASEB J. 2015;29(4):1136–42.

    Article  CAS  PubMed  Google Scholar 

  26. Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients. 2018;10(2).

  27. Trommelen J, Betz MW, van Loon LJC. The Muscle Protein Synthetic Response to Meal Ingestion Following Resistance-Type Exercise. Sports Med. 2019;49(2):185–97.

    Article  PubMed  Google Scholar 

  28. •• Kerksick CM, Arent S, Schoenfeld BJ, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33 Excellent, recent review of implications of nutrient timing in sports.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Naclerio F, Larumbe-Zabala E, Ashrafi N, Seijo M, Nielsen B, Allgrove J, et al. Effects of protein-carbohydrate supplementation on immunity and resistance training outcomes: a double-blind, randomized, controlled clinical trial. Eur J Appl Physiol. 2017;117(2):267–77.

    Article  CAS  PubMed  Google Scholar 

  30. Reidy PT, Rasmussen BB. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J Nutr. 2016;146(2):155–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pasiakos SM, Lieberman HR, McLellan TM. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med. 2014;44(5):655–70.

    Article  PubMed  Google Scholar 

  32. Pasiakos SM, McLellan TM, Lieberman HR. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med. 2015;45(1):111–31.

    Article  PubMed  Google Scholar 

  33. Davies RW, Carson BP, Jakeman PM. The Effect of Whey Protein Supplementation on the Temporal Recovery of Muscle Function Following Resistance Training: A Systematic Review and Meta-Analysis. Nutrients. 2018;10(2).

    Article  PubMed Central  CAS  Google Scholar 

  34. Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376–84.

    Article  PubMed  Google Scholar 

  35. Wall BT, Burd NA, Franssen R, Gorissen SH, Snijders T, Senden JM, et al. Presleep protein ingestion does not compromise the muscle protein synthetic response to protein ingested the following morning. Am J Physiol Endocrinol Metab. 2016;311(6):E964–73.

    Article  PubMed  Google Scholar 

  36. Macnaughton LS, Wardle SL, Witard OC, et al. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol Rep. 2016;4(15).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hulmi JJ, Laakso M, Mero AA, Hakkinen K, Ahtiainen JP, Peltonen H. The effects of whey protein with or without carbohydrates on resistance training adaptations. J Int Soc Sports Nutr. 2015;12:48.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Snijders T, Res PT, Smeets JS, et al. Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men. J Nutr. 2015;145(6):1178–84.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez AM, Hoffman JR, Jajtner AR, Townsend JR, Boone CH, Beyer KS, et al. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men. Nutr Res. 2015;35(11):990–1000.

    Article  CAS  PubMed  Google Scholar 

  40. Negro M, Vandoni M, Ottobrini S, et al. Protein supplementation with low fat meat after resistance training: effects on body composition and strength. Nutrients. 2014;6(8):3040–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  42. Rahbek SK, Farup J, Moller AB, et al. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids. 2014;46(10):2377–92.

    Article  CAS  PubMed  Google Scholar 

  43. Poulios A, Fatouros IG, Mohr M, et al. Post-Game High Protein Intake May Improve Recovery of Football-Specific Performance during a Congested Game Fixture: Results from the PRO-FOOTBALL Study. Nutrients. 2018;10(4).

    Article  PubMed Central  CAS  Google Scholar 

  44. •• Knuiman P, Hopman MTE, Verbruggen C, Mensink M. Protein and the Adaptive Response With Endurance Training: Wishful Thinking or a Competitive Edge? Front Physiol. 2018;9:598 This is a thorough review of the rationale and evidence behind protein supplementation in endurance athletes, a topic of increasing importance and study.

    Article  PubMed  PubMed Central  Google Scholar 

  45. D'Lugos AC, Luden ND, Faller JM, Akers JD, McKenzie AI, Saunders MJ. Supplemental Protein during Heavy Cycling Training and Recovery Impacts Skeletal Muscle and Heart Rate Responses but Not Performance. Nutrients. 2016;8(9).

    Article  PubMed Central  CAS  Google Scholar 

  46. Eddens L, Browne S, Stevenson EJ, Sanderson B, van Someren K, Howatson G. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. Appl Physiol Nutr Metab. 2017;42(7):716–24.

    Article  CAS  PubMed  Google Scholar 

  47. Forbes SC, Bell GJ. Whey Protein Isolate Supplementation While Endurance Training Does Not Alter Cycling Performance or Immune Responses at Rest or After Exercise. Frontiers in nutrition. 2019;6:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hansen M, Bangsbo J, Jensen J, et al. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J Int Soc Sports Nutr. 2016;13:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Huang WC, Chang YC, Chen YM, Hsu YJ, Huang CC, Kan NW, et al. Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners. Int J Med Sci. 2017;14(7):648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larsen MS, Clausen D, Jorgensen AA, Mikkelsen UR, Hansen M. Presleep Protein Supplementation Does Not Improve Recovery During Consecutive Days of Intense Endurance Training: A Randomized Controlled Trial. Int J Sport Nutr Exerc Metab. 2019:1–9.

  51. Naclerio F, Larumbe-Zabala E, Cooper R, Jimenez A, Goss-Sampson M. Effect of a carbohydrate-protein multi-ingredient supplement on intermittent sprint performance and muscle damage in recreational athletes. Appl Physiol Nutr Metab. 2014;39(10):1151–8.

    Article  CAS  PubMed  Google Scholar 

  52. Roberson PA, Romero MA, Mumford PW, et al. Protein Supplementation Throughout 10 Weeks of Progressive Run Training Is Not Beneficial for Time Trial Improvement. Frontiers in nutrition. 2018;5:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rowlands DS, Nelson AR, Phillips SM, Faulkner JA, Clarke J, Burd NA, et al. Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc. 2015;47(3):547–55.

    Article  CAS  PubMed  Google Scholar 

  54. Saunders MJ, Luden ND, DeWitt CR, Gross MC, Dillon RA. Protein Supplementation During or Following a Marathon Run Influences Post-Exercise Recovery. Nutrients. 2018;10(3).

  55. Williamson E, Kato H, Volterman KA, Suzuki K, Moore DR. The Effect of Dietary Protein on Protein Metabolism and Performance in Endurance-trained Males. Med Sci Sports Exerc. 2019;51(2):352–60.

    Article  CAS  PubMed  Google Scholar 

  56. Holm L, Rahbek SK, Farup J, Vendelbo MH, Vissing K. Contraction mode and whey protein intake affect the synthesis rate of intramuscular connective tissue. Muscle Nerve. 2017;55(1):128–30.

    Article  CAS  PubMed  Google Scholar 

  57. Reidy PT, Borack MS, Markofski MM, Dickinson JM, Deer RR, Husaini SH, et al. Protein Supplementation Has Minimal Effects on Muscle Adaptations during Resistance Exercise Training in Young Men: A Double-Blind Randomized Clinical Trial. J Nutr. 2016;146(9):1660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients. 2017;9(7).

    Article  PubMed Central  CAS  Google Scholar 

  59. Brown MA, Stevenson EJ, Howatson G. Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females. Appl Physiol Nutr Metab. 2018;43(4):324–30.

    Article  CAS  PubMed  Google Scholar 

  60. Camera DM, West DW, Phillips SM, Rerecich T, Stellingwerff T, Hawley JA, et al. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Med Sci Sports Exerc. 2015;47(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  61. Hansen M, Bangsbo J, Jensen J, Bibby BM, Madsen K. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int J Sport Nutr Exerc Metab. 2015;25(2):97–109.

    Article  CAS  PubMed  Google Scholar 

  62. Ho CF, Jiao Y, Wei B, Yang Z, Wang HY, Wu YY, et al. Protein supplementation enhances cerebral oxygenation during exercise in elite basketball players. Nutrition. 2018;53:34–7.

    Article  CAS  PubMed  Google Scholar 

  63. Pasiakos SM, McClung HL, Margolis LM, Murphy NE, Lin GG, Hydren JR, et al. Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition. PloS one. 2015;10(10):e0140863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shenoy S, Dhawan M, Singh SJ. Four Weeks of Supplementation With Isolated Soy Protein Attenuates Exercise-Induced Muscle Damage and Enhances Muscle Recovery in Well Trained Athletes: A Randomized Trial. Asian J Sports Med. 2016;7(3):e33528.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Taylor LW, Wilborn C, Roberts MD, White A, Dugan K. Eight weeks of pre- and postexercise whey protein supplementation increases lean body mass and improves performance in Division III collegiate female basketball players. Appl Physiol Nutr Metab. 2016;41(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  66. Schaafsma G. Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. Br J Nutr. 2012;108(Suppl 2):S333–6.

    Article  CAS  PubMed  Google Scholar 

  67. Dallas DC, Sanctuary MR, Qu Y, Khajavi SH, van Zandt A, Dyandra M, et al. Personalizing protein nourishment. Crit Rev Food Sci Nutr. 2017;57(15):3313–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Hekken DL, Tunick MH, Ren DX, Tomasula PM. Comparing the effect of homogenization and heat processing on the properties and in vitro digestion of milk from organic and conventional dairy herds. J Dairy Sci. 2017;100(8):6042–52.

    Article  PubMed  CAS  Google Scholar 

  69. van Vliet S, Burd NA, van Loon LJ. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J Nutr. 2015;145(9):1981–91.

    Article  PubMed  Google Scholar 

  70. Devries MC, Phillips SM. Supplemental protein in support of muscle mass and health: advantage whey. J Food Sci. 2015;80(Suppl 1):A8–A15.

    Article  CAS  PubMed  Google Scholar 

  71. Hamarsland H, Handegard V, Kashagen M, Benestad HB, Raastad T. No Difference between Spray Dried Milk and Native Whey Supplementation with Strength Training. Med Sci Sports Exerc. 2019;51(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  72. Atherton PJ, Kumar V, Selby AL, Rankin D, Hildebrandt W, Phillips BE, et al. Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men. Clin Nutr. 2017;36(3):888–95.

    Article  CAS  PubMed  Google Scholar 

  73. Babault N, Paizis C, Deley G, et al. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. J Int Soc Sports Nutr. 2015;12(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Banaszek A, Townsend JR, Bender D, Vantrease WC, Marshall AC, Johnson KD. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports (Basel, Switzerland). 2019;7(1).

    Article  PubMed Central  Google Scholar 

  75. Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ. Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr. 2015;102(4):828–36.

    Article  CAS  PubMed  Google Scholar 

  76. Churchward-Venne TA, Breen L, Di Donato DM, et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr. 2014;99(2):276–86.

    Article  CAS  PubMed  Google Scholar 

  77. Fabre M, Hausswirth C, Tiollier E, et al. Effects of Postexercise Protein Intake on Muscle Mass and Strength During Resistance Training: Is There an Optimal Ratio Between Fast and Slow Proteins? Int J Sport Nutr Exerc Metab. 2017;27(5):448–57.

    Article  CAS  PubMed  Google Scholar 

  78. Hamarsland H, Nordengen AL, Nyvik Aas S, et al. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: a randomized controlled trial. J Int Soc Sports Nutr. 2017;14:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. • Kim IY, Schutzler S, Schrader A, et al. The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults. Am J Physiol Endocrinol Metab. 2016;310(1):E73–80 This article calls into question the “ceiling” single meal protein dose, though results should be taken with caution and futher studies should attempt to validate their results.

    Article  PubMed  Google Scholar 

  80. Madzima TA, Panton LB, Fretti SK, Kinsey AW, Ormsbee MJ. Night-time consumption of protein or carbohydrate results in increased morning resting energy expenditure in active college-aged men. Br J Nutr. 2014;111(1):71-77.

    Article  CAS  Google Scholar 

  81. Mitchell CJ, McGregor RA, D'Souza RF, Thorstensen EB, Markworth JF, Fanning AC, et al. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men. Nutrients. 2015;7(10):8685–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mobley CB, Haun CT, Roberson PA, et al. Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males. Nutrients. 2017;9(9).

    Article  PubMed Central  CAS  Google Scholar 

  83. Rindom E, Nielsen MH, Kececi K, Jensen ME, Vissing K, Farup J. Effect of protein quality on recovery after intense resistance training. European journal of applied physiology. 2016;116(11-12):2225–36.

    Article  CAS  PubMed  Google Scholar 

  84. Hoffman JR, Falvo MJ. Protein - Which is Best? J Sports Sci Med. 2004;3(3):118–30.

    PubMed  PubMed Central  Google Scholar 

  85. Mohanty DP, Mohapatra S, Misra S, Sahu PS. Milk derived bioactive peptides and their impact on human health - A review. Saudi J Biol Sci. 2016;23(5):577–83.

    Article  CAS  PubMed  Google Scholar 

  86. Antonio J, Ellerbroek A, Peacock C, Silver T. Casein Protein Supplementation in Trained Men and Women: Morning versus Evening. Int J Exerc Sci. 2017;10(3):479–86.

    PubMed  PubMed Central  Google Scholar 

  87. Trommelen J, van Loon LJ. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training. Nutrients. 2016;8(12).

    Article  PubMed Central  CAS  Google Scholar 

  88. Woolf PJ, Fu LL, Basu A. vProtein: identifying optimal amino acid complements from plant-based foods. PloS one. 2011;6(4):e18836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Phillips SM, Van Loon LJ. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl 1):S29–38.

    Article  PubMed  Google Scholar 

  90. McCarty MF, O'Keefe JH, DiNicolantonio JJ. Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection. Ochsner J. 2018;18(1):81–7.

    PubMed  PubMed Central  Google Scholar 

  91. Shaw G, Lee-Barthel A, Ross ML, Wang B, Baar K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr. 2017;105(1):136–43.

    Article  CAS  PubMed  Google Scholar 

  92. Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 2017;14:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Foure A, Bendahan D. Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review. Nutrients. 2017;9(10).

  94. Hudson JL, Bergia RE 3rd, Campbell WW. Effects of protein supplements consumed with meals, versus between meals, on resistance training-induced body composition changes in adults: a systematic review. Nutr Rev. 2018;76(6):461–8.

    Article  PubMed  Google Scholar 

  95. Joy JM, Vogel RM, Shane Broughton K, et al. Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: a preliminary investigation. J Int Soc Sports Nutr. 2018;15(1):24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kim J, Lee C, Lee J. Effect of timing of whey protein supplement on muscle damage markers after eccentric exercise. J Exerc Rehabil. 2017;13(4):436–40.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore M, et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr. 2014;144(6):876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pihoker AA, Peterjohn AM, Trexler ET, Hirsch KR, Blue MNM, Anderson KC, et al. The effects of nutrient timing on training adaptations in resistance-trained females. Journal of science and medicine in sport. 2019;22(4):472–7.

    Article  PubMed  Google Scholar 

  99. Schoenfeld BJ, Aragon A, Wilborn C, Urbina SL, Hayward SE, Krieger J. Pre- versus post-exercise protein intake has similar effects on muscular adaptations. PeerJ. 2017;5:e2825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PW. Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance. J Nutr. 2017;147(5):850–7.

    Article  CAS  PubMed  Google Scholar 

  101. Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PWR. Indicator amino acid oxidation protein requirement estimate in endurance-trained men 24 h postexercise exceeds both the EAR and current athlete guidelines. Am J Physiol Endocrinol Metab. 2019;316(5):E741–8.

    Article  CAS  PubMed  Google Scholar 

  102. Kato H, Suzuki K, Bannai M, Moore DR. Protein Requirements Are Elevated in Endurance Athletes after Exercise as Determined by the Indicator Amino Acid Oxidation Method. PloS one. 2016;11(6):e0157406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Malowany JM, West DWD, Williamson E, et al. Protein to Maximize Whole-Body Anabolism in Resistance-trained Females after Exercise. Med Sci Sports Exerc. 2019;51(4):798–804.

    Article  CAS  PubMed  Google Scholar 

  104. Wooding DJ, Packer JE, Kato H, West DWD, Courtney-Martin G, Pencharz PB, et al. Increased Protein Requirements in Female Athletes after Variable-Intensity Exercise. Med Sci Sports Exerc. 2017;49(11):2297–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Alyssa Thomas for her assistance in creating the three tables contained within this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Huecker.

Ethics declarations

Conflict of Interest

Martin Huecker, Menaka Sarav, Michelle Pearlman, and Janese Laster declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Gastroenterology, Critical Care, and Lifestyle Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huecker, M., Sarav, M., Pearlman, M. et al. Protein Supplementation in Sport: Source, Timing, and Intended Benefits. Curr Nutr Rep 8, 382–396 (2019). https://doi.org/10.1007/s13668-019-00293-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-019-00293-1

Keywords

Navigation