Skip to main content
Log in

Gene-Environment Interplay in Child Eating Behaviors: What the Role of “Nature” Means for the Effects of “Nurture”

  • Maternal and Childhood Nutrition (AC Wood, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This narrative review describes the evidence for both genetic and environmental influences on child appetitive traits and suggests ways of thinking about how these interact and correlate to influence how a child eats.

Recent Findings

Emerging evidence from social network analysis, and from longitudinal studies questioning the direction of association between parent feeding behaviors and child obesity risk, suggest that children’s genes may shape the environmental risk for obesity that they are exposed to.

Summary

There is strong evidence that child appetitive traits are both heritable and shaped by the environment. Instead of thinking about how genetic and environmental factors operate independently on each appetitive trait, research needs to expand the current paradigm to examine how genes and environments interact and shape each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311(8):806–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Valente TW, Fujimoto K, Chou C-P, Spruijt-Metz D. Adolescent affiliations and adiposity: a social network analysis of friendships and obesity. J Adolesc Health. 2009;45(2):202–4.

    PubMed  PubMed Central  Google Scholar 

  3. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35(7):891–8.

    CAS  Google Scholar 

  4. Ogden CL, Lamb MM, Carroll MD, Flegal KM. Obesity and socioeconomic status in children and adolescents: United States, 2005-2008. NCHS data brief. number 51. National Center for Health Statistics. 2010.

  5. Galton F. Hereditary genius: an inquiry into its laws and consequences. Vol 27: Macmillan; 1869.

  6. McGue M, Gottesman II. Behavioral genetics. The encyclopedia of clinical psychology. 2015;1:341–351.

  7. •• Lumeng J. Too indulgent or not sensitive enough: mothering in the current historical era and its relevance to childhood obesity. Nature Publishing Group; 2017. An editorial on the shifting perspectives regarding nature and nurture in child eating behaviors.

  8. Fuller JL, Thompson WR. Behaviour genetics. London: Wiley; 1960.

    Google Scholar 

  9. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat. 2007;28(9):831–45.

    CAS  PubMed  Google Scholar 

  11. Woolf L, Griffiths R, Moncrieff A. Treatment of phenylketonuria with a diet low in phenylalanine. Br Med J. 1955;1(4905):57–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dubois L, Kyvik KO, Girard M, et al. Genetic and environmental contributions to weight, height, and BMI from birth to 19 years of age: an international study of over 12,000 twin pairs. PLoS One. 2012;7(2):e30153.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. PÉRUSSE L, TREMBLAY A, LEBLANC C, BOUCHARD C. Genetic and environmental influences on level of habitual physical activity and exercise participation. Am J Epidemiol. 1989;129(5):1012–22.

    PubMed  Google Scholar 

  14. Llewellyn CH, van Jaarsveld CH, Johnson L, Carnell S, Wardle J. Nature and nurture in infant appetite: analysis of the Gemini twin birth cohort. Am J Clin Nutr. 2010;91(5):1172–9.

    CAS  PubMed  Google Scholar 

  15. Dunton GF, Kaplan J, Wolch J, Jerrett M, Reynolds KD. Physical environmental correlates of childhood obesity: a systematic review. Obes Rev. 2009;10(4):393–402.

    CAS  PubMed  Google Scholar 

  16. Sleddens EF, Kremers SP, Thijs C. The Children’s Eating Behaviour Questionnaire: factorial validity and association with body mass index in Dutch children aged 6–7. Int J Behav Nutr Phys Act. 2008;5(1):49.

    PubMed  PubMed Central  Google Scholar 

  17. Wood AC. Appetitive traits: genetic contributions to pediatric eating behaviors. In: Pediatric food preferences and eating behaviors: Elsevier; 2018. p. 127–46.

  18. Baumeister R, Vohs K. Handbook of self-regulation: research, theory and applications. 1st ed. New York: The Guilford Press; 2004.

    Google Scholar 

  19. Blundell J, Rogers P, Hill A. Evaluating the satiating power of foods: implications for acceptance and consumption. Food acceptance and nutrition/edited by J. Solms...[et al.]. 1987.

  20. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–9.

    CAS  PubMed  Google Scholar 

  21. Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci U S A. 2004;101(21):8227–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayer J. Regulation of energy intake and the body weight: the glucostatic theory and the lipostatic hypothesis. Ann N Y Acad Sci. 1955;63(1):15–43.

    CAS  PubMed  Google Scholar 

  23. Campfield LA, Brandon P, Smith FJ. On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation. Brain Res Bull. 1985;14(6):605–16.

    CAS  PubMed  Google Scholar 

  24. Smith FJ, Campfield LA. Meal initiation occurs after experimental induction of transient declines in blood glucose. Am J Phys Regul Integr Comp Phys. 1993;265(6):R1423–9.

    CAS  Google Scholar 

  25. VAN ITALLIE TB, BEAUDOIN R, Mayer J. Arleriovenous glucose differences, metabolic hypoglycemia and food intake in man. Am J Clin Nutr. 1953;1(3):208–17.

    CAS  Google Scholar 

  26. Overduin J, Frayo RS, Grill HJ, Kaplan JM, Cummings DE. Role of the duodenum and macronutrient type in ghrelin regulation. Endocrinology. 2005;146(2):845–50.

    CAS  PubMed  Google Scholar 

  27. Degen L, Drewe J, Piccoli F, Gräni K, Oesch S, Bunea R, et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Phys Regul Integr Comp Phys. 2007;292(4):R1391–9.

    CAS  Google Scholar 

  28. Viana V, Sinde S, Saxton JC. Children’s Eating Behaviour Questionnaire: associations with BMI in Portuguese children. Br J Nutr. Aug 2008;100(2):445–50.

    CAS  PubMed  Google Scholar 

  29. Webber L, Hill C, Saxton J, Van Jaarsveld CH, Wardle J. Eating behaviour and weight in children. Int J Obes. Jan 2009;33(1):21–8.

    CAS  Google Scholar 

  30. Carnell S, Wardle J. Appetite and adiposity in children: evidence for a behavioral susceptibility theory of obesity. Am J Clin Nutr. 2008;88(1):22–9.

    CAS  PubMed  Google Scholar 

  31. Sleddens EF, Kremers SP, Thijs C. The children’s eating behaviour questionnaire: factorial validity and association with body mass index in Dutch children aged 6-7. Int J Behav Nutr Phys Act. 2008;5:49.

    PubMed  PubMed Central  Google Scholar 

  32. Butte NF, Cai G, Cole SA, Wilson TA, Fisher JO, Zakeri IF, et al. Metabolic and behavioral predictors of weight gain in Hispanic children: the Viva la Familia Study. Am J Clin Nutr. 2007;85(6):1478–85.

    CAS  PubMed  Google Scholar 

  33. Faith MS, Berkowitz RI, Stallings VA, Kerns J, Storey M, Stunkard AJ. Eating in the absence of hunger: a genetic marker for childhood obesity in prepubertal boys? Obesity (Silver Spring). 2006;14(1):131–8.

    Google Scholar 

  34. Faith MS, Carnell S, Kral TV. Genetics of food intake self-regulation in childhood: literature review and research opportunities. Hum Hered. 2013;75(2–4):80–9.

    PubMed  Google Scholar 

  35. Fisher JO, Birch LL. Eating in the absence of hunger and overweight in girls from 5 to 7 y of age. Am J Clin Nutr. 2002;76(1):226–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fisher JO, Cai G, Jaramillo SJ, Cole SA, Comuzzie AG, Butte NF. Heritability of hyperphagic eating behavior and appetite-related hormones among Hispanic children. Obesity (Silver Spring). Jun 2007;15(6):1484–95.

    Google Scholar 

  37. Hill C, Llewellyn CH, Saxton J, Webber L, Semmler C, Carnell S, et al. Adiposity and ‘eating in the absence of hunger’ in children. Int J Obes. 2008;32(10):1499–505.

    CAS  Google Scholar 

  38. Llewellyn CH, van Jaarsveld CH, Plomin R, Fisher A, Wardle J. Inherited behavioral susceptibility to adiposity in infancy: a multivariate genetic analysis of appetite and weight in the Gemini birth cohort. Am J Clin Nutr. 2012;95(3):633–9.

    CAS  PubMed  Google Scholar 

  39. Faith MS, Pietrobelli A, Heo M, Johnson SL, Keller KL, Heymsfield SB, et al. A twin study of self-regulatory eating in early childhood: estimates of genetic and environmental influence, and measurement considerations. Int J Obes. 2012;36(7):931–7.

    CAS  Google Scholar 

  40. Carnell S, Haworth CM, Plomin R, Wardle J. Genetic influence on appetite in children. Int J Obes. 2008;32(10):1468–73.

    CAS  Google Scholar 

  41. Llewellyn CH, Van Jaarsveld CH, Boniface D, Carnell S, Wardle J. Eating rate is a heritable phenotype related to weight in children. Am J Clin Nutr. 2008;88(6):1560–6.

    CAS  PubMed  Google Scholar 

  42. Klump KL, McGue M, Iacono WG. Age differences in genetic and environmental influences on eating attitudes and behaviors in preadolescent and adolescent female twins. J Abnorm Psychol. 2000;109(2):239–51.

    CAS  PubMed  Google Scholar 

  43. Klump KL, McGue M, Iacono WG. Differential heritability of eating attitudes and behaviors in prepubertal versus pubertal twins. Int J Eat Disord. 2003;33(3):287–92.

    PubMed  Google Scholar 

  44. Olszewski PK, Fredriksson R, Olszewska AM, Stephansson O, Alsiö J, Radomska KJ, et al. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci. 2009;10(1):129.

    PubMed  PubMed Central  Google Scholar 

  45. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):2558–66.

    CAS  PubMed  Google Scholar 

  46. Wardle J, Llewellyn C, Sanderson S, Plomin R. The FTO gene and measured food intake in children. Int J Obes. Jan 2009;33(1):42–5.

    CAS  Google Scholar 

  47. Timpson NJ, Emmett PM, Frayling TM, Rogers I, Hattersley AT, McCarthy MI, et al. The fat mass–and obesity-associated locus and dietary intake in children. Am J Clin Nutr. 2008;88(4):971–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wardle J, Guthrie CA, Sanderson S, Rapoport L. Development of the Children’s Eating Behaviour Questionnaire. J Child Psychol Psychiatry. 2001;42(7):963–70.

    CAS  PubMed  Google Scholar 

  49. Velders FP, De Wit JE, Jansen PW, et al. FTO at rs9939609, food responsiveness, emotional control and symptoms of ADHD in preschool children. PLoS One. 2012;7(11):e49131.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hill ME. Skin color and the perception of attractiveness among African Americans: does gender make a difference? Soc Psychol Q. 2002;65:77–91.

    Google Scholar 

  51. Eigsti I-M, Zayas V, Mischel W, Shoda Y, Ayduk O, Dadlani MB, et al. Predicting cognitive control from preschool to late adolescence and young adulthood. Psychol Sci. 2006;17(6):478–84.

    PubMed  Google Scholar 

  52. Katz PA. Perception of racial cues in preschool children: a new look. Dev Psychol. 1973;8(2):295–9.

    Google Scholar 

  53. Steudte S, Kirschbaum C, Gao W, Alexander N, Schönfeld S, Hoyer J, et al. Hair cortisol as a biomarker of traumatization in healthy individuals and posttraumatic stress disorder patients. Biol Psychiatry. 2013;74(9):639–46.

    CAS  PubMed  Google Scholar 

  54. Stalder T, Steudte S, Miller R, Skoluda N, Dettenborn L, Kirschbaum C. Intraindividual stability of hair cortisol concentrations. Psychoneuroendocrinology. 2012;37(5):602–10.

    CAS  PubMed  Google Scholar 

  55. Gao W, Stalder T, Foley P, Rauh M, Deng H, Kirschbaum C. Quantitative analysis of steroid hormones in human hair using a column-switching LC–APCI–MS/MS assay. J Chromatogr B. 2013;928:1–8.

    CAS  Google Scholar 

  56. Carnell S, Benson L, Driggin E, Kolbe L. Parent feeding behavior and child appetite: associations depend on feeding style. Int J Eat Disord. 2014;47(7):705–9.

    PubMed  PubMed Central  Google Scholar 

  57. Webber L, Cooke L, Hill C, Wardle J. Associations between children’s appetitive traits and maternal feeding practices. J Am Diet Assoc. 2010;110(11):1718–22.

    PubMed  Google Scholar 

  58. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sallis JF, Taylor WC, Dowda M, Freedson PS, Pate RR. Correlates of vigorous physical activity for children in grades 1 through 12: comparing parent-reported and objectively measured physical activity. Pediatr Exerc Sci. 2002;14(1):30–44.

    Google Scholar 

  60. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12(12):1559–66.

    CAS  PubMed  Google Scholar 

  61. Hughes SO, Power TG, Orlet Fisher J, Mueller S, Nicklas TA. Revisiting a neglected construct: parenting styles in a child-feeding context. Appetite. Feb 2005;44(1):83–92.

    Google Scholar 

  62. Hoerr SL, Hughes SO, Fisher JO, Nicklas TA, Liu Y, Shewchuk RM. Associations among parental feeding styles and children’s food intake in families with limited incomes. Int J Behav Nutr Phys Act. 2009;6:55.

    PubMed  PubMed Central  Google Scholar 

  63. Hennessy E, Hughes SO, Goldberg JP, Hyatt RR, Economos CD. Permissive parental feeding behavior is associated with an increase in intake of low-nutrient-dense foods among American children living in rural communities. J Acad Nutr Diet. 2012;112(1):142–8.

    PubMed  Google Scholar 

  64. Orrell-Valente JK, Hill LG, Brechwald WA, Dodge KA, Pettit GS, Bates JE. “Just three more bites”: an observational analysis of parents’ socialization of children’s eating at mealtime. Appetite. 2007;48(1):37–45.

    PubMed  Google Scholar 

  65. Kimmel J, Connelly R. Mothers’ time choices caregiving, leisure, home production, and paid work. J Hum Resour. 2007;42(3):643–81.

    Google Scholar 

  66. Perroud N, Paoloni-Giacobino A, Prada P, Olié E, Salzmann A, Nicastro R, et al. Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl Psychiatry. 2011;1(12):e59.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. van IJzendoorn MH, Caspers K, Bakermans-Kranenburg MJ, Beach SR, Philibert R. Methylation matters: interaction between methylation density and serotonin transporter genotype predicts unresolved loss or trauma. Biol Psychiatry. 2010;68(5):405–7.

    PubMed  PubMed Central  Google Scholar 

  68. Frazier-Wood AC, Allison DB. The epigenetics of obesity. New York: The Guildford Press; 2015.

    Google Scholar 

  69. Stelmach A, Nerlich B. Metaphors in search of a target: the curious case of epigenetics. New Genet Soc. 2015;34(2):196–218.

    PubMed  PubMed Central  Google Scholar 

  70. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci. 2008;105(44):17046–9.

    CAS  PubMed  Google Scholar 

  71. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG. Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis. Sep 2006;44(9):401–6.

    CAS  PubMed  Google Scholar 

  72. Waterland RA. Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers. Annu Rev Nutr. 2014;34:337–55.

    CAS  PubMed  Google Scholar 

  73. Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res. 2012;22:1395–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet. 2007;16(5):547–54.

    CAS  PubMed  Google Scholar 

  75. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5:3746.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Houtepen LC, Vinkers CH, Carrillo-Roa T, Hiemstra M, van Lier PA, Meeus W, et al. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat Commun. 2016;7:10967.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. •• Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci. 2015;112(44):13699–704 This research reveals a complex interplay between environment, genetic variation, and gene expression in a DNA methylation.

    CAS  PubMed  Google Scholar 

  78. Perroud N, Rutembesa E, Paoloni-Giacobino A, Mutabaruka J, Mutesa L, Stenz L, et al. The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis. World J Biol Psychiatry. 2014;15(4):334–45.

    PubMed  Google Scholar 

  79. van den Berg SM, Setiawan A, Bartels M, Polderman TJ, van der Vaart AW, Boomsma DI. Individual differences in puberty onset in girls: Bayesian estimation of heritabilities and genetic correlations. Behav Genet. 2006;36(2):261–70.

    PubMed  Google Scholar 

  80. Klump KL, Perkins PS, Burt SA, McGUE M, Iacono WG. Puberty moderates genetic influences on disordered eating. Psychol Med. 2007;37(5):627–34.

    PubMed  Google Scholar 

  81. Faith MS, Berkowitz RI, Stallings VA, Kerns J, Storey M, Stunkard AJ. Parental feeding attitudes and styles and child body mass index: prospective analysis of a gene-environment interaction. Pediatrics. 2004;114(4):e429–36.

    PubMed  Google Scholar 

  82. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med. 2007;357(4):370–9.

    CAS  PubMed  Google Scholar 

  83. Webber L, Cooke L, Hill C, Wardle J. Child adiposity and maternal feeding practices: a longitudinal analysis. Am J Clin Nutr. 2010;92(6):1423–8.

    CAS  PubMed  Google Scholar 

  84. Francis LA, Hofer SM, Birch LL. Predictors of maternal child-feeding style: maternal and child characteristics. Appetite. 2001;37(3):231–43.

    CAS  PubMed  Google Scholar 

  85. Rodgers RF, Paxton SJ, Massey R, Campbell KJ, Wertheim EH, Skouteris H, et al. Maternal feeding practices predict weight gain and obesogenic eating behaviors in young children: a prospective study. Int J Behav Nutr Phys Act. 2013;10(1):24.

    PubMed  PubMed Central  Google Scholar 

  86. • Wood AC, Momin S, Senn M, Hughes SO. Pediatric eating behaviors as the intersection of biology and parenting: lessons from the birds and the bees. Curr Nutr Rep. 2018;7(1):1–9 Provides an in-depth look at how heritable biological influences on child appetitive traits may interact with the feeding environment.

    CAS  PubMed  Google Scholar 

  87. Scarr S. Developmental theories for the 1990s: development and individual differences. Child Dev. 1992;63(1):1–19.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis C. Wood.

Ethics declarations

Conflict of Interest

Alexis C. Wood declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Maternal and Childhood Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, A.C. Gene-Environment Interplay in Child Eating Behaviors: What the Role of “Nature” Means for the Effects of “Nurture”. Curr Nutr Rep 7, 294–302 (2018). https://doi.org/10.1007/s13668-018-0254-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-018-0254-x

Keywords

Navigation