Skip to main content
Log in

Stevia rebaudiana Bertoni and Its Effects in Human Disease: Emphasizing Its Role in Inflammation, Atherosclerosis and Metabolic Syndrome

Current Nutrition Reports Aims and scope Submit manuscript

Cite this article

Abstract

Purpose of Review

Stevia rebaudiana Bertoni is a perennial shrub with zero calorie content that has been increasing in popularity for its potential use as an adjuvant in the treatment of obesity. The level of evidence supporting general benefits to human health is insufficient. We conducted a review of the literature summarizing the current knowledge and role in human disease.

Recent Findings

Despite stevia’s minimal systemic absorption, studies have been promising regarding its potential benefits against inflammation, carcinogenesis, atherosclerosis glucose control, and hypertension. On the other hand, the growing popularity of artificial sweeteners does not correlate with improved trends in obesity. An increased intake of artificial non-caloric sweeteners may not be associated with decreased intake of traditional sugar-sweetened beverages and foods. The effects of Stevia on weight change have been linked to bacteria in the intestinal microbiome, mainly by affecting Clostridium and Bacteroides sp. populations. A growing body of evidence indicates that Stevia rebaudiana Bertoni is protective against malignant conversion by inhibition of DNA replication in human cancer cell growth in vitro.

Summary

Consumption of Stevia has demonstrated to be generally safe in most reports. Further clinical studies are warranted to determine if regular consumption brings sustained benefits for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS data brief 2015. Num 219. Hyattsville: National Center for Health Statistics.

  2. Obesity and overweight. World health organization fact sheet. 2017. Available at: https://www.who.int/mediacentre/factsheets/fs311/en/ (Accessed 12/31/2017).

  3. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22(Supp3):1–205.

    Article  PubMed  Google Scholar 

  4. Goyal SK, Samsher, Goyal RK. Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr. 2010;61(1):1–10. https://doi.org/10.3109/09637480903193049.

    Article  PubMed  CAS  Google Scholar 

  5. Atteh J, Onagbesan O, Tona K, Decuypere E, Geuns J, Buyse J. Evaluation of supplementary Stevia (Stevia rebaudiana Bertoni) leaves and stevioside in broiler diets: effects on feed intake, nutrient metabolism, blood parameters and growth performance. J Anim Physiol Anim Nutr. 2008;92(6):640–9.

    Article  CAS  Google Scholar 

  6. Kroyer G. Stevioside and Stevia-sweetener in food: application, stability and interaction with food ingredients. J. Verbr. Lebensm. 2010;5:225–9. https://doi.org/10.1007/s00003-010-0557-3.

    Article  CAS  Google Scholar 

  7. Seema T. Stevia rebaudiana: a medicinal and nutraceutical plant and sweet gold for diabetic patients. Int. J. of Pharm. Life Sci. 2010;1(8):451–7.

    Google Scholar 

  8. Chattopadhyay S, Raychaudhuri U, Chakraborty R. Artificial sweeteners—a review. J Food Sci Technol. 2014;51(4):611–21. https://doi.org/10.1007/s13197-011-0571-1.

    Article  PubMed  CAS  Google Scholar 

  9. International Stevia Council. Available online at: https://www.internationalsteviacouncil.org/fileadmin/media/About_Stevia/stevia_6pp__1_.pdf. Accessed 01/02/2018.

  10. Le Bertoni M. Kaà He-é Sa nature et ses proprietes. Anales Científicos Paraguayos. 1905;5:1–14.

    Google Scholar 

  11. Kinghorn AD. Stevia: the genus Stevia, vol. 224. Boca Raton: CRC Press; 2003.

    Google Scholar 

  12. Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther. 2009;121:41–54.

    Article  PubMed  CAS  Google Scholar 

  13. Aminha S, Soumya AN, Raju VG, Goud BM, Irfath M, Quadri SAP. Isolation and extraction of artificial sweetener (Stevia). World J Pharm Res. 2014;3:481–6.

    Google Scholar 

  14. Kinghorn AD, Soejarto DD. Current status of stevioside as a sweetening agent for human use. Progress in medicinal and Economic Plan research, vol. 1. London: Academic Press; 1985. p. 1–51.

    Google Scholar 

  15. Crammer B, Ikan R. Progress in the chemistry and properties of the rebaudiosides. In: Grenby, editor. Developments in Sweeteners 1987. London: Elsevier Applied Science; 1987. p. 45–64.

    Google Scholar 

  16. Phillips KC. Stevia: steps in developing a new sweetener. In: Grenby TH, editor. Developments in sweeteners. Vol 3. London: Elsevier Applied Science; 1987. p. 1–43.

    Google Scholar 

  17. Bridel M, Lavieille R. Le principe a saveur sucree du Kaa-he-e (Stevia Rebaudiana) Bertoni. Bull Soc Chim Biol. 1931;13:636–55.

    CAS  Google Scholar 

  18. Khoda H, Kaisai R, Yamasaki K, Tanaka O. New sweet diterpene glucose from Stevia rebaudiana. Phytochemistry. 1976;15:981–3.

    Article  Google Scholar 

  19. Kinghorn D, Soejarto DD, Nanyakkare NPD, Compadre CM, Makapugay HC, Hovanec-Brown JM, et al. A phytochemical screening procedure for sweet ent-Kaurene glycosides in the genus Stevia. Nat Prod. 1984;47:439–44.

    Article  CAS  Google Scholar 

  20. Savita S, Sheela K, Sunanda S, Shankar A, Ramakrishna P. Stevia rebaudiana—a functional component for food industry. J Hum Ecol. 2004;15:261–4.

    Article  Google Scholar 

  21. Mauri P, Catalano G, Gardana C, Pietta P. Analysis of Stevia glyosides by capillary electrophoresis. Electrophoresis. 1997;17:376–1.

    Google Scholar 

  22. Madan S, Ahmad S, Singh GN, Kohli K, Kumar Y, Singh R, et al. Stevia rebaudiana (Bert.) Bertoni—a review. Indian J Nat Prod Resour. 2010;1(3):267–86.

    CAS  Google Scholar 

  23. Gupta E, Purwar S, Sundaram S, Rai GK. Nutritional and therapeutic values of Stevia rebaudiana: a review. J Med Plants Res. 2013;7(46):3343–53.

    CAS  Google Scholar 

  24. Hutapea AM, Toskulkao C, Buddhasukh D, Wilairat P, Glinsukon T. Digestion of stevioside, a natural sweetener, by various digestive enzymes. J Clin Biochem Nutr. 1997;23:177–86.

    Article  CAS  Google Scholar 

  25. Koyama E, Kitazawa K, Ohori Y, Izawa O, Kakegawa K, Fujino A, et al. In vitro metabolism of the glycosidic sweeteners, Stevia mixture and enzymatically modified Stevia in human intestinal microflora. Food Chem Toxicol. 2003;41:359–74.

    Article  PubMed  CAS  Google Scholar 

  26. Simonetti P, Gardana C, Bramati L, Pietta PG. Bioavailability of Stevioside from Stevia rebaudiana in human volunteers: preliminary report. Proceedings of the first symposium on the safety of stevioside, April 16, 2004. Heverlee-Leuven, Belgium: Euprint Editions, pp. 51–62.

  27. Magnuson BA, Carakostas MC, Moore NH, Poulos SP, Renwick AG. Biological fate of low-calorie sweeteners. Nutr Rev. 2016;74(11):670–89. https://doi.org/10.1093/nutrit/nuw032.

    Article  PubMed  Google Scholar 

  28. Geuns JMC, Buyse J, Vankeirsbilck A, Temme EHM. Metabolism of stevioside by healthy subjects. Exp Biol Med. 2007;232:164–73.

    CAS  Google Scholar 

  29. Nikiforov AI, Rihner MO, Eapen AK, Thomas JA. Metabolism and toxicity studies supporting the safety of rebaudioside D. Int J Toxicol. 2013;32(4):261–73. https://doi.org/10.1177/1091581813492828.

    Article  PubMed  CAS  Google Scholar 

  30. Tucker AO, Debaggio T. The encyclopedia of Herbs. A comprehensive review of flavor and fragrance. Portland: Timber Press; 2009. p. 467–71.

    Google Scholar 

  31. American Diabetes Association Standards of Medical Care in Diabetes. Lifestyle Management. Diabetes Care. 2017;40(Suppl. 1):S33–43. https://doi.org/10.2337/dc17-S007.

    Article  Google Scholar 

  32. Norazlanshah H, Azizah M, Muhammad I, Mashita M, Khairil A, Norazmir N, et al. Effect of acute Stevia consumption on blood glucose response in healthy Malay young adults. Sains Malaysiana. 2014;43(5):649–54.

    Google Scholar 

  33. Mukhtar M, Tiong CS, Bukhari SI, Abdullah AH, Ming LC. Safety and efficacy of health supplement (Stevia rebaudiana). Arch Pharma Pract. 2016;7(Suppl S1):16–21.

    Google Scholar 

  34. Suanarunsawat T, Klongpanichapak S, Rungseesantivanon S, Chaiyabutr N. Glycemic effect of stevioside and Stevia rebaudiana in streptozotocin-induced diabetic rats. East J Med. 2009;9:51–6.

    Google Scholar 

  35. Naveen S, Mahadev N, Farhath K, Vijay KK. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complicat. 2013;27:103–13.

    Article  Google Scholar 

  36. Assaei R, Mokarram P, Dastghaib S, Darbandi S, Darbandi M, Zal F, et al. Hypoglycemic effect of aquatic extract of Stevia in pancreas of diabetic rats: PPARγ -dependent regulation or antioxidant potential. Avicenna J Med Biotech. 2016;8(2):65–74.

    Google Scholar 

  37. •• Philippaert K, Pironet A, Mesuere M, Sones W, Vermeiren L, Kerselaers S, et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun. 2017;8:14733. https://doi.org/10.1038/ncomms14733. This article describes a potential novel mechanism to prevent and treat type 2 diabetes mellitus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. 2004;53(1):73–6. https://doi.org/10.1016/j.metabol.2003.07.013.

    Article  PubMed  CAS  Google Scholar 

  39. Ruiz-Ruiz JC, Moguel-Ordoñez YB, Matus-Basto AJ, Segura-Campos MR. Antidiabetic and antioxidant activity of Stevia rebaudiana extracts (Var. Morita) and their incorporation into a potential functional bread. J Food Sci Technol. 2015;52(12):7894–903. https://doi.org/10.1007/s13197-015-1883-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sylvetsky AC, Welsh JA, Brown RJ, Vos MB. Low-calorie sweetener consumption is increasing in the United States. Am J Clin Nutr. 2012;96(3):640–6. https://doi.org/10.3945/ajcn.112.034751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity (Silver Spring). 2008;16(8):1894–900. https://doi.org/10.1038/oby.2008.284.

    Article  Google Scholar 

  42. Colditz GA, Willett WC, Stampfer MJ, London SJ, Segal MR, Speizer FE. Patterns of weight change and their relation to diet in a cohort of healthy women. Am J Clin Nutr. 1990;51(6):1100–5.

    Article  PubMed  CAS  Google Scholar 

  43. de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB. Sugar sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am J Clin Nutr. 2011;93(6):1321. https://doi.org/10.3945/ajcn.110.007922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mattes RD, Popkin BM. Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr. 2009;89(1):1–14. https://doi.org/10.3945/ajcn.2008.26792.

    Article  PubMed  CAS  Google Scholar 

  45. • Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–89. https://doi.org/10.1007/s40273-014-0243-x. This article reflects that incidence of obesity has not been affected by increased popularity of artificial sweeteners.

    Article  PubMed  PubMed Central  Google Scholar 

  46. •• O’Connor L, Imamura F, Lentjes MA, Khaw KT, Wareham NJ, Forouhi NG. Prospective associations and population impact of sweet beverage intake and type 2 diabetes, and effects of substitutions with alternative beverages. Diabetologia. 2015;58(7):1474–83. https://doi.org/10.1007/s00125-015-3572-1. Noteworthy finding in this study was that substituting sugar-sweetened drinks with artificially sweetened drinks did not reduce type 2 diabetes incidence.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Duffey KJ, Steffen LM, Van Horn L, Jacobs DR Jr, Popkin BM. Dietary patterns matter: diet beverages and cardiometabolic risks in the longitudinal Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Clin Nutr. 2012;95(4):909–15. https://doi.org/10.3945/ajcn.111.026682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gardener H, Rundek T, Markert M, Wright CB, Elkind MS, Sacco RL. Diet soft drink consumption is associated with an increased risk of vascular events in the Northern Manhattan study. J Gen Intern Med. 2012;27(9):1120–6. https://doi.org/10.1007/s11606-011-1968-2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bernstein AM, de Koning L, Flint AJ, Rexrode KM, Willett WC. Soda consumption and the risk of stroke in men and women. Am J Clin Nutr. 2012;95(5):1190–9. https://doi.org/10.3945/ajcn.111.030205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chia CW, Shardell M, Tanaka T, Liu DD, Gravenstein KS, Simonsick EM, et al. Chronic low-calorie sweetener use and risk of abdominal obesity among older adults: a cohort study. PLoS One. 2016;11(11):e0167241. https://doi.org/10.1371/journal.pone.0167241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Fagherazzi G, et al. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the etude Epidemiologique aupres des femmes de la Mutuelle Generale de l’Education Nationale-European prospective investigation into Cancer and nutrition cohort. Am J Clin Nutr. 2013;97:517–23.

    Article  PubMed  CAS  Google Scholar 

  52. Gardener H, et al. Diet soft drink consumption is associated with an increased risk of vascular events in the Northern Manhattan study. J Gen Intern Med. 2012;27:1120–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cohen L, et al. Association of sweetened beverage intake with incident hypertension. J Gen Intern Med. 2012;27:1127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Duffey KJ, et al. Dietary patterns matter: diet beverages and cardiometabolic risks in the longitudinal Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Clin Nutr. 2012;95:909–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Swithers SE. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab. 2013;24(9):431–41. https://doi.org/10.1016/j.tem.2013.05.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Anton SD, Martin CK, Hongmei H, Coulon S, Cefalu WT, Geiselman P, et al. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010;55(1):37–43. https://doi.org/10.1016/j.appet.2010.03.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ruanpeng D, Thongprayoon C, Cheungpasitporn W, Harindhanavudhi T. Sugar and artificially-sweetened beverages linked to obesity: a systematic review and meta-analysis. QJM. 2017;110(8):513–20. https://doi.org/10.1093/qjmed/hcx068.

    Article  PubMed  CAS  Google Scholar 

  58. Durán Agüero S, Vásquez Leiva A, Morales Illanes G, Schifferli Castro I, Sanhueza Espinoza C, Encina Vega C, et al. Consumo de stevia en estudiantes universitarios chilenos y su asociación con el estado nutricional. Nutr Hosp. 2015;32:362–6. https://doi.org/10.3305/nh.2015.32.1.8961.

    Article  PubMed  Google Scholar 

  59. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys L, Copstein L, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ. 2017;189:E929–39. https://doi.org/10.1503/cmaj.161390.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ashwell M. Stevia, nature’s zero-calorie sustainable sweetener a new player in the fight against obesity. Nutr Today. 2015;50(3):129–34. https://doi.org/10.1097/NT.0000000000000099.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pearlman M, Obert J, Casey L. The association between artificial sweeteners and obesity. Curr Gastroenterol Rep. 2017;19:64. https://doi.org/10.1007/s11894-017-0602-9.

    Article  PubMed  Google Scholar 

  62. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. https://doi.org/10.1038/nature11450.

    Article  PubMed  CAS  Google Scholar 

  63. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. https://doi.org/10.1038/nature12198.

    Article  PubMed  CAS  Google Scholar 

  64. Gardana C, Simonetti P, Canzi E, et al. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem. 2003;51:6618–22.

    Article  PubMed  CAS  Google Scholar 

  65. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328:228–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci. 2004;101:15718–23.

    Article  PubMed  Google Scholar 

  67. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6. https://doi.org/10.1038/nature13793.

    Article  PubMed  CAS  Google Scholar 

  68. Renwick AG, Tarka SM. Microbial hydrolysis of steviol glycosides. Food Chem Toxicol. 2008;46(suppl 7):S70–4.

    Article  PubMed  CAS  Google Scholar 

  69. Sheiham A, James WPT. A reappraisal of the quantitative relationship between sugar intake and dental caries: the need for new criteria for developing goals for sugar intake. BMC Public Health. 2014;14:863.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Giacaman RA, Campos P, Muñoz-Sandoval C, Castro RJ. Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Arch Oral Biol. 2013;58:1116–22.

    Article  PubMed  CAS  Google Scholar 

  71. Gamboa F, Chaves M. Antimicrobial potential of extracts from Steoooovia rebaudiana leaves against bacteria of importance in dental caries. Acta Odontol Latinoam. 2012;25:171–5.

    PubMed  Google Scholar 

  72. De Slavutzky SMB. Stevia and sucrose effect on plaque formation. J Verbr Lebensm. 2010;5:213–6.

    Article  Google Scholar 

  73. Brambilla E, Cagetti MG, Ionescu A, Campus G, Lingström P. An in vitro and in vivo comparison of the effect of Stevia rebaudiana extracts on different caries-related variables: a randomized controlled trial pilot study. Caries Res. 2014;48:19–23.

    Article  PubMed  CAS  Google Scholar 

  74. Ferrazzano GF.; Cantile, T.; Alcidi, B.; Coda, M.; Ingenito, A.; Zarrelli, A, ; Di Fabio, G.; Pollio, A. Is Stevia rebaudiana Bertoni a non cariogenic sweetener? A Review Molecules 2016, 21, 38; doi:https://doi.org/10.3390/molecules21010038.

    Article  Google Scholar 

  75. Wang T, et al. Stevioside plays an anti-inflammatory role by regulating the NF-κB and MAPK pathways in S. aureus-infected mouse mammary glands. Inflammation. 2014;37(5):1837–46.

    Article  PubMed  CAS  Google Scholar 

  76. Bunprajun T, et al. Stevioside enhances satellite cell activation by inhibiting of NF-κB signaling pathway in regenerating muscle after cardiotoxin-induced injury. J Agric Food Chem. 2012;60(11):2844–51.

    Article  PubMed  CAS  Google Scholar 

  77. Kim S-Y, et al. Anti-inflammatory effect of Stevia Rebaudiana as a results of NF-kB and MAPK inhibition. J Korean Med Opthalmol Otolaryngol Dermatol. 2013;26(3):54–64.

    Article  Google Scholar 

  78. Boonkaewwan C, Toskulkao C, Vongsakul M. Anti-inflammatory and immunomodulatory activities of stevioside and its metabolite steviol on THP-1 cells. J Agric Food Chem. 2006;54(3):785–9.

    Article  PubMed  CAS  Google Scholar 

  79. Boonkaewwan C, Burodom A. Anti-inflammatory and immunomodulatory activities of stevioside and steviol on colonic epithelial cells. J Sci Food Agric. 2013;93(15):3820–5.

    Article  PubMed  CAS  Google Scholar 

  80. Stevenson TH. The effects of stevia on cytokine production in human THP-1 monocytes. Cardiff Metropolitan University Repository 2017. Availble at: https://hdl.handle.net/10369/8962. Accessed 01/05/2018.

  81. Elzinga SE, et al. Metabolic and inflammatory responses to the common sweetener stevioside and a glycemic challenge in horses with equine metabolic syndrome. Domest Anim Endocrinol. 2017;60(Supplement C):1–8.

    Article  PubMed  CAS  Google Scholar 

  82. Sehar I, Kaul A, Bani S, Chandra H, Kumar AS. Immune up regulatory response of a non-caloric natural sweetener, stevioside. Chem Biol Interact. 2008;173:115–21.

    Article  PubMed  CAS  Google Scholar 

  83. Geeraert B, et al. Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int J Obes. 2009;34:569.

    Article  Google Scholar 

  84. Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care. 1979;2(2):120–6.

    Article  PubMed  CAS  Google Scholar 

  85. Fujishima M, et al. Diabetes and cardiovascular disease in a prospective population survey in Japan: the Hisayama study. Diabetes. 1996;45(Supplement 3):S14–6.

    Article  PubMed  CAS  Google Scholar 

  86. Ulbricht C, Isaac R, Milkin T, Poole EA, Rusie E, Serrano JMG, et al. An evidence-based systematic review of Stevia by the natural standard research collaboration. Cardiovasc Hematol Agents Med Chem. 2010;8:113–27.

    Article  PubMed  CAS  Google Scholar 

  87. Roberts A, Munro I. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther. 2009;122

  88. Melis M, Sainati A. Effect of calcium and verapamil on renal function of rats during treatment with stevioside. J Ethnopharmacol. 1991;33:257–62.

    Article  PubMed  CAS  Google Scholar 

  89. Melis M. Stevioside effect on renal function of normal and hypertensive rats. J Ethnopharmacol. 1992;36:213–7.

    Article  PubMed  CAS  Google Scholar 

  90. Melis M. Chronic administration of aqueous extract of Stevia rebaudiana in rats: renal effects. J Ethnopharmacol. 1995;47:129–34.

    Article  PubMed  CAS  Google Scholar 

  91. Melis M. Effects of Steviol on renal function and mean arterial pressure in rats. Phytomedicine. 1997;3:349–52.

    Article  PubMed  CAS  Google Scholar 

  92. Melis M. Effect of crude extract of Stevia rebaudiana on renal water and electrolytes excretion. Phytomedicine. 1999;6:247–50.

    Article  PubMed  CAS  Google Scholar 

  93. Liu J-C, Kao P-K, Chan P, Hsu Y-H, Hou C-C, Lien G-S, et al. Mechanism of the antihypertensive effect of stevioside in anesthetized dogs. Pharmacology. 2002;67:14–20.

    Article  Google Scholar 

  94. Lee C-N, Wong K-L, Liu J-C, Chen Y-J, Cheng J-T, Chan P. Inhibitory effect of Stevioside on calcium influx to produce antihypertension. Planta Med. 2001;67:796–9.

    Article  PubMed  CAS  Google Scholar 

  95. Jeppesen P, Gregersen S, Rolfsen S, Jepsen M, Colombo M, Agger A, et al. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism. 2003;52:372–8.

    Article  PubMed  CAS  Google Scholar 

  96. De-Yi X, Hong C, Yuan-Yuan L. The antihypertensive effects by stevioside in the conscious nomal and hypertensive rats. Eur J Pharmacol. 1822;1990:183.

    Google Scholar 

  97. Chan P, Tomlinson B, Chen Y, Liu J, Hsieh M, Cheng J. A doubleblind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol. 2000;50:215–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Hsieh M-H, Chan P, Sue Y-M, Liu J-C, Liang TH, Huang T-Y, et al. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther. 2003;25:2797–808.

    Article  PubMed  CAS  Google Scholar 

  99. Savita S, Sheela K, Sunanda S, Shankar A, Ramakrishna P, Sakey S. Health implications of Stevia rebaudiana. J Hum Ecol. 2004;15:191–4.

    Article  Google Scholar 

  100. Barriocanal LA, Palacios M, Benitez G, Benitez S, Jimenez JT, Jimenez N, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics. Regul Toxicol Pharmacol. 2008;51:37–41.

    Article  PubMed  CAS  Google Scholar 

  101. Masuda T, Yamashita D, Maekawa T, Sone Y, Yamaguchi H, Takeda Y, et al. Identification of antioxidative compounds from Stevia (Stevia rebaudiana). Nippon Shokuhin Kagaku Kogaku Kaishi. 2006;53:597–602.

    Article  CAS  Google Scholar 

  102. Konoshima T, Takasaki M. Cancer-chemopreventive effects of natural sweeteners and related compounds. Pure Appl Chem. 2002;74

  103. Nakamura Y, Sakiyama S, Takenaga K. Suppression of syntheses of high molecular weight nonmuscle tropomyosins in macrophages. Cell Motil Cytoskeleton. 1995;31:273–82.

    Article  PubMed  CAS  Google Scholar 

  104. Akihisa T, Hamasaki Y, Tokuda H, Ukiya M, Kimura Y, Nishino H. Microbial transformation of isosteviol and inhibitory effects on Epstein−Barr virus activation of the transformation products. J Nat Prod. 2004;67:407–10.

    Article  PubMed  CAS  Google Scholar 

  105. Kaushik R, Narayanan P, Vasudevan V, Muthukumaran G, Usha A. Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. J Food Sci Technol. 2010;47:27–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yasukawa K. Inhibitory effect of a combined treatment of glycyrrhizin and caffeine on tumor promotion by 12-O-tetradecanoylphorbol-13- acetate in two-stage carcinogenesis in mouse skin. J. Pharm. Nutr. Sci. 2013:202–5.

  107. Mizushina Y, Akihisa T, Ukiya M, Hamasaki Y, Murakami-Nakai C, Kuriyama I, et al. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci. 2005;77:2127–40.

    Article  PubMed  CAS  Google Scholar 

  108. Salim EI. Inhibitory effects of 1,3-diaminopropane, an ornithine decarboxylase inhibitor, on rat two-stage urinary bladder carcinogenesis initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine. Carcinogenesis. 2000;21:195–203.

    Article  PubMed  CAS  Google Scholar 

  109. Suttajit M, Vinitketkaumnuen U, Meevatee U, Buddhasukh D. Mutagenicity and human chromosomal effect of stevioside, a sweetener from Stevia rebaudiana Bertoni. Environ Health Perspect. 1993;101:53–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Matsui M, Matsui K, Kawasaki Y, Oda Y, Noguchi T, Kitagawa Y, et al. Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays. Mutagenesis. 1996;11:573–9.

    Article  PubMed  CAS  Google Scholar 

  111. Glinsukon T, Pimbua J, Panichkul T. Stevioside: a natural sweetener from Stevia rebaudiana Bertoni: toxicological evaluation. Thai J Toxicology. 1988, 4, 1–22.

  112. Panichkul T, Glinsukon T, Buddhasukh D, Cheuychit P, Pimolsri U. The plasma levels of urea nitrogen, creatinine and uric acid and urine volume in rats and hamsters treated with stevioside. Thai J Toxicology. 1988;4:47–52.

    Google Scholar 

  113. Jones G. “Stevia”. NebGuide: University of Nebraska–Lincoln Institute of Agriculture and Natural Resources. Feb 2014.

  114. Japan Food Chemical Research Foundation. List of Existing Food Additives [Complied and published by the Ministry of Health and Welfare on April 16, 1996. Tokyo, Japan: Ministry of Health, Labor and Welfare, Japan (MHLW) and Japan Food Chemical Research Foundation (JFCRF). Available at: https://www.ffcr.or.jp/zaidan/FFCRHOME.nsf/pages/list-exst.add [Effective from January 30, 2014, Last update: 04/10/2014].

  115. Brusick DJ. A critical review of the genetic toxicity of steviol and steviol glycosides. Food Chem Toxicol. 2008;2008(46):S83–91.

    Article  Google Scholar 

  116. Urban JD, Carakostas MC, Taylor SL. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens? Food Chem Toxicol. 2015;75:71–8.

    Article  PubMed  CAS  Google Scholar 

  117. JECFA. Steviol glycosides [Prepared at the 73rd JECFA (2010) and published in FAO JECFA Monographs 10 (2010)]. In: Combined Compendium of Food Additive Specifications [Online Edition]. General Specifications for Enzymes Analytical Methods, Volume 4. (FAO JECFA Monographs 10). Rome, Italy: Food and Agriculture Organization of the United Nations (FAO), Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available at: https://www.fao.org/ag/agn/jecfa-additives/specs/monograph10/additive-442-m10.pdf.

  118. U.S. Food and Drug Administration. Has Stevia been approved by FDA to be used as a sweetener?. Available at https://www.fda.gov/AboutFDA/Transparency/Basics/ucm194320.html.

  119. EFSA. Scientific opinion on the safety of the proposed amendment of the specifications for steviol glycosides (E 960) as a food additive. (EFSA Panel on Food Additives and Nutrient Sources Added to Food/ANS) (Question no EFSA-Q-2014-00002, adopted on 17 November 2015 by European Food Safety Authority). EFSA J 13(12):4316 [29 pp.]. https://doi.org/10.2903/j.efsa.2015.4316. Available at: https://www.efsa.europa.eu/en/efsajournal/pub/4316.

  120. MFDS. Enzymatically modified stevia glucosyl stevia. In: Korea Food Additives Code. (All designated chemicals and some natural additives are currently regulated by Food Additives Code. It includes specifications, standards and general test methods for each additives). Korea: Ministry of Food and Drug Safety (MFDS). Available at: https://fa.kfda.go.kr/standard/egongjeon_standard_view.jsp?SerialNo=184&GoCa=2 [Latest English version edition published Feb. 24, 2015].

  121. Health Canada. Information and Consultation Document on Health Canada's Proposal to Allow the Use of the Food Additive Steviol Glycosides as a Table-Top Sweetener and as a Sweetener in Certain Food Categories. Ottawa (ON): Health Canada, Bureau of Chemical Safety, Food Directorate. Available at: https://www.hc-sc.gc.ca/fn-n/consult/steviol/document-consultation-eng.php#a12 [Date Modified: 2012–11-30].

  122. Government of Malaysia. Part VIII. Standards and particular labelling requirements for food. Sweetening substance. 118B. Enzymatically modified stevia. In: Laws of Malaysia: P.U.(A) 437 of 1985 Food Act 1983: Food Regulations 1985. Putrajaya, Malaysia: Government of Malaysia. Available at: https://www.asianfoodreg.com/dynamicAssets/regulationDoc/1412157254_Malaysian-Food-Regulations-19852014.pdf.

  123. FSANZ (2008). Final Assessment Report: Application A540 Steviol Glycosides as Intense Sweeteners. Canberra, Australia: Food Standards Australia New Zealand (FSANZ). Available at: https://www.foodstandards.gov.au/code/applications/documents/FAR_A540_Steviol_gl ycosides.pdf.

  124. FSANZ (2015). A1108–Rebaudioside M as a Steviol Glycoside Intense Sweetener. (Application to Change Food Standards Code). Canberra, Australia / Wellington, NZ: Foods Standards Australia New Zealand (FSANZ). Available at: https://www.foodstandards.gov.au/code/applications/Pages/A1108-RebaudiosideM-SteviolGlycosideIntenseSweetener.aspx.

Download references

Acknowledgements

Daloha Rodríguez-Molina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Rojas.

Ethics declarations

Conflict of Interest

Edward Rojas, Valmore Bermúdez, Yasaman Motlaghzadeh, Justin Mathew, Enzamaria Fidilio, Judith Faria, Joselyn Rojas, Mayela Cabrera de Bravo, Julio Contreras, Linda Pamela Mantilla, Lissé Angarita, Paola Amar Sepúlveda, and Isaac Kuzmar declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, E., Bermúdez, V., Motlaghzadeh, Y. et al. Stevia rebaudiana Bertoni and Its Effects in Human Disease: Emphasizing Its Role in Inflammation, Atherosclerosis and Metabolic Syndrome. Curr Nutr Rep 7, 161–170 (2018). https://doi.org/10.1007/s13668-018-0228-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-018-0228-z

Keywords

Navigation